Abstract:
An air data probe (46) has a pitot tube with a tap (47) at a forward end (48) that defines an inner flow path. The inner flow path decreases in the cross-sectional area until reaching a throat (50). The inner flow path has cross-sections that are generally cylindrical and also has sections of removed material (52).
Abstract:
An air data probe includes a probe head (102;202;302;402;602) and a raised portion (106;206;306;406;606). The probe head defines a longitudinal axis (A) and includes a forward tip (104;204;304;404;604) and a probe head surface (107;207;307;407;607). The raised portion is defined in the probe head surface aft of the forward tip. The raised portion is raised radially relative to the probe head surface. The raised portion is configured and adapted to trip a fluid boundary layer passing over the probe head to transition from laminar to turbulent for reducing boundary layer separation for consistent readings at high altitudes and/or high mach numbers. A method of manufacturing an air data probe includes forming a probe head and applying a raised portion to a surface of the probe head aft of the forward tip. Applying the raised portion to the surface of the probe head includes using brazing, additive manufacturing, adhesives and/or any other suitable technique.
Abstract:
A device is disclosed for measuring total pressure of a fluid flow comprises a tubular member having an inlet chamber with an inlet opening at a first end of the tubular member. The tubular member also comprises an outlet chamber having an outlet opening at a second end of the tubular member. The inlet opening has a diameter transverse to the longitudinal axis and the outlet opening has a second diameter transverse to the longitudinal axis. The ratio of the first diameter to the second diameter is from 3:1 to 10:1. The tubular member also includes a transitional chamber between the inlet chamber and the outlet chamber. Total pressure can be measured in the inlet chamber.
Abstract:
An air data probe (10) includes a probe body (18) and an air data sensing port (20) disposed in the probe body (18). The probe body (18) includes a barrel region, a tapered head region extending forward from the barrel region, and a tip at a forward-most end of the tapered head region. The air data sensing port (20) is disposed in the probe body (18) at a port location aft of the tip. The probe body (18) has a turbulence-producing geometry originating at the tip that produces a turbulent boundary layer of airflow that extends from the tip to the port location.
Abstract:
A device is disclosed for measuring total pressure of a fluid flow comprises a tubular member having an inlet chamber with an inlet opening at a first end of the tubular member. The tubular member also comprises an outlet chamber having an outlet opening at a second end of the tubular member. The inlet opening has a diameter transverse to the longitudinal axis and the outlet opening has a second diameter transverse to the longitudinal axis. The ratio of the first diameter to the second diameter is from 3:1 to 10:1. The tubular member also includes a transitional chamber between the inlet chamber and the outlet chamber. Total pressure can be measured in the inlet chamber.