Abstract:
A Zr-based composite ceramic material, a preparation method thereof, and a shell or decoration are provided. The Zr-based composite ceramic material includes a zirconia matrix, a cubic Sr 0.82 NbO 3 stable phase, a Ca 10 (PO 4 ) 6 (OH) 2 phase, and a SrAl 12 O 19 phase, and the cubic Sr 0.82 NbO 3 stable phase, the Ca 10 (PO 4 ) 6 (OH) 2 phase and the SrAl 12 O 19 phase are dispersed within the zirconia matrix.
Abstract:
A Zr-based composite ceramic material, a preparation method thereof and a shell or a decoration are provided. The Zr-based composite ceramic material includes a zirconia matrix and a cubic Sr x NbO 3 stable phase dispersed within the zirconia matrix, where 0.7≤x≤0.95.
Abstract translation:提供Zr基复合陶瓷材料,其制备方法和壳体或装饰物。 Zr基复合陶瓷材料包括氧化锆基体和分散在氧化锆基体内的立方Sr x NbO 3稳定相,其中0.7≤x≤0.95。 p >
Abstract:
A method for soldering a chip on a metallic-ceramic composite board is provided, the metallic-ceramic composite board comprising a ceramic substrate, a first metal plate, and a second metal plate, plate faces at two sides of the ceramic substrate being configured to be a circuit face and a non-circuit face respectively, the first metal plate being connected to the circuit face, and the second metal plate being connected to the non-circuit face, wherein the method comprises: etching the second metal plate, such that the metallic-ceramic composite board forms a bent plate shape protruding towards the side at which the non-circuit face is located; and soldering the chip on the first metal plate, so as to obtain a substantially flat-straight metallic-ceramic composite board on which the chip is soldered. In addition, a metallic-ceramic composite board for soldering a chip thereon is provided.
Abstract:
A ceramic and a method for preparing a ceramic are provided. The ceramic includes an alumina and an oxygen-containing compound of strontium having a perovskite structure.
Abstract:
A sound insulation composition and a sound insulation sheet for a vehicle are provided. The sound insulation composition includes 50 to 300 parts by weight of EVA, 10 to 300 parts by weight of mica powers, 10 to 300 parts by weight of dolomite, 10 to 50 parts by weight of thermoplastic resin, 10 to 100 parts by weight of a toughening agent, 3 to 60 parts by weight of a compatilizer, 30 to 300 parts by weight of a fire retardant, 10 to 80 parts by weight of a plasticizer, and 100 to 500 parts by weight of barium sulfate. The sound insulation sheet for the vehicle is made of the sound insulation composition mentioned above.
Abstract:
A base plate for a heat sink as well as a heat sink and an IGBT module having the same are provided. The base plate includes: a base plate body, including a body part; and a first surface layer and a second surface layer disposed respectively on two opposing surfaces of the body part; and N pins disposed on the first surface layer and spaced apart from one another, each pin having a first end fixed on the first surface layer and a second end configured as a free end, in which the first surface layer and the N pins are configured to contact a coolant, an area of a first portion of the first surface layer contacting the coolant is denoted as S1, and an area of a second portion of the first surface layer contacting each pin is denoted as S2, in which 180≤S1/S2≤800, and 300≤N
Abstract:
A ceramic substrate, a manufacturing method thereof, and a power module comprising the ceramic substrate. The ceramic substrate comprises a core layer and a plurality of surface layers, optionally it further comprises a plurality of transition layers. The core layer is made of zirconia toughened alumina; the surface layers symmetrically located on the upper and lower surfaces of the core layer are made of Al 2 O 3 ; and the transition layers symmetrically located between the surface layer and the core layer are made of zirconia toughened alumina. The core layer has a chemical composition of 0wt% 2 ≤40wt% and 60wt%≤Al 2 O 3
Abstract translation:陶瓷基板及其制造方法以及包括陶瓷基板的功率模块。 陶瓷衬底包括芯层和多个表面层,任选地,其还包括多个过渡层。 芯层由氧化锆增韧的氧化铝制成; 对称地位于芯层的上表面和下表面上的表面层由Al 2 O 3制成; 对称地位于表层和芯层之间的过渡层由氧化锆增韧的氧化铝制成。 核心层的化学组成为0重量%
Abstract:
A positive temperature coefficient heating assembly includes a heating core (10) including a first metal electrode plate (2a), a second metal electrode plate (2b) and a plurality of PTC ceramic chips (1); an insulating layer coated on the heating core (10); and a metal tube (8); the PTC ceramic chip (1) includes a positive electrode layer, a negative electrode layer, and a ceramic sintered layer; a plurality of first limit grooves (21a) are formed in the first metal electrode plate (2a), a plurality of second limit grooves (2b) are formed in the second metal electrode plate (21b), a first end of each of the PTC ceramic chips (1) is embedded in one of the first limit grooves (21a), and a second end of each of the PTC ceramic chips (1) is embedded in one of the second limit grooves (21b).
Abstract:
A method for selectively metallizing a surface of a ceramic substrate, a ceramic product and use of the ceramic product are provided. The method comprises steps of: A) molding and sintering a ceramic composition to obtain the ceramic substrate, in which the ceramic composition comprises a ceramic powder and a functional powder dispersed in the ceramic powder; the ceramic powder is at least one selected from a group consisting of an oxide of E, a nitride of E, a oxynitride of E, and a carbide of E; E is at least one selected from a group consisting of Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, B, Al, Ga, Si, Ge, P, As, Sc, Y, Zr, Hf, and lanthanide elements; the functional powder is at least one selected from a group consisting of an oxide of M, a nitride of M, a oxynitride of M, a carbide of M, and a simple substance of M; and M is at least one selected from a group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Ta, W, Re, Os, Ir, Pt, Au, In, Sn, Sb, Pb, Bi, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu; B) radiating a predetermined region of the surface of the ceramic substrate using an energy beam to form a chemical plating active center on the predetermined region of the surface of the ceramic substrate; and C) performing chemical plating on the ceramic substrate formed with the chemical plating active center to form a metal layer on the predetermined region of the surface of the ceramic substrate.
Abstract:
A ceramic and a preparation method therefor are provided. The ceramic includes a zirconia matrix, and an additive dispersed inside and on an outer surface of the zirconia matrix. The additive is an oxide including elements A and B, where A is selected from at least one of Ca, Sr, Ba, Y, and La, and B is selected from at least one of Cr, Mn, Fe, Co, and Ni.