Abstract:
A method of deoxygenation of tall oil as well as methods for the production of aliphatic hydrocarbons and polymerizable monomers from tall oil. Sulphurous crude tall oil together with hydrogen gas is fed into a reactor comprising a catalyst bed. The oil is catalytically deoxygenated by hydrogen in the bed by use of a sulfided metal catalyst, e.g. a NiMoS catalyst. The flow exiting the reactor is cooled down and a hydrocarbon-bearing liquid phase is separated from a gas phase, followed by subjecting the liquid phase to distillation for removal of useless aromatic hydrocarbons and then to steam cracking to form a product containing olefins such as ethylene or propylene. By regulation of the deoxygenation temperature to be at least 270° C. but less than 360° C. the yield is rich in linear and cyclic aliphates that usefully turn to olefins in the steam cracking, while formation of napthalenes is reduced.
Abstract:
Biobased p-cymene and methods of producing same, which can further be converted to terephtalate. Further, a method is described for converting crude sulfate turpentine recovered from chemical wood pulping into p-cymene and eventually to terephtalic acid of biological origin, and products thereof respectively. In said method, both conversion and desulfurization is realized in one reaction step. The disclosure is also related to use of zeolite catalysts in said method.
Abstract:
The invention relates to a method for priming a substrate by contacting the substrate with a primer fed from a primer source and depositing the primer on the substrate. Compared to other priming methods, the claimed priming gives better results because the deposition is carried out electrostatically.
Abstract:
The present invention relates to a method of deoxygenating tall oil pitch, yielding aliphatic and aromatic hydrocarbons. The invention even comprises turning the aliphates into polymerizable olefins by steam cracking, and turning the aromates into polymerizable terephthalic acid by oxygenation and, as necessary, rearrangement. The monomers can be used for the production of polymers of partially or completely biologic origin. According to the invention, tall oil pitch is first heated to turn it into liquid, which is then fed into a catalyst bed and catalytically deoxygenated with hydrogen. The deoxygenation catalyst is preferably a Ni—Mo catalyst and, in addition, a cracking catalyst can be used, such as an acidic zeolite catalyst. The deoxygenated product stream is cooled down so as to obtain a liquid, which is distilled for separation of the aliphatic and aromatic hydrocarbons for use in the production of the respective monomers and finally polymers.
Abstract:
The present invention relates to a method of manufacturing aromatic hydrocarbons, which are suitable for the production of terephthalic acid, from tall oil-based raw material. According to the invention, the raw material that contains tall oil or its fraction is catalytically deoxygenated with hydrogen, and one or more aromatic hydrocarbons (A) that can be converted into terephthalic acid are separated from the deoxygenated reaction yield (10). The deoxygenation catalyst is preferably a NiMo catalyst and, in addition, a cracking catalyst can be used, such as an acidic zeolite catalyst. The separated hydrocarbon is preferably p-xylene, o-xylene or p-cymene. According to the invention, these can be converted by oxidation and, when needed, by a re-arrangement reaction into terephthalic acid that is suitable for the source material of the manufacture of bio-based polyethylene terephthalate.
Abstract:
The present invention relates to a process for the production of microfibrillated cellulose wherein the process comprises the steps of, providing a slurry comprising fibers, adding the slurry to an extruder, treating the slurry in the extruder so that the fibers are defibrillated and microfibrillated cellulose is formed. The invention further relates to a microfibrillated cellulose produced.