Abstract:
The present invention is directed to a packaging material comprising a layer of microfibrillated cellulose (MFC) and an aluminum layer having a thickness of 0.1-20 μm, wherein the layer comprising MFC and/or the aluminum layer has been laminated or extrusion coated on at least one side with a thermoplastic polymer and wherein the amount of aluminum is sufficient to make the packaging material heat sealable by induction. The MFC layer contains at least 60% by weight of microfibrillated cellulose.
Abstract:
A biodegradable packaging material, a method of manufacturing the same, as well as products made of the material wherein the manufacture comprises extrusion onto a fibrous substrate one or more polymer coating layers including at least one layer of a polymer blend consisting of (i) 20-95 wt-% of polylactide having a high melt index of more than 35 g/10 min (210° C.; 2.16 kg), (ii) 5-80 wt-% of polybutylene succinate (PBS) or a biodegradable derivate thereof, and (iii) 0-5 wt-% of one or more polymeric additives. The components of the blend are melted and blended in connection with the extrusion step. The goal is to improve extrudability, increase machine speed in extrusion and maintaining good adhesiveness to the substrate and good heat-sealability of the coating. The products include disposable drinking cups and board trays, as well as sealed carton packages for solids and liquids.
Abstract:
The invention relates to a method and an apparatus for deep-drawing a tray (1) from a blank of sheet material (2). The blank is provided with score lines, which determine the location of wrinkles formed in the process. The apparatus comprises a female moulding tool (3), which comprises a cavity (7) for forming the tray bottom outwardly, a male moulding tool (4), which comprises a plunger (11) for forming the tray bottom inwardly, the plunger being movable with respect to the cavity for forming the tray, and clamps (6, 15) with an interface for holding the sheet material and forming a tray rim flange. According to the invention by laterally distancing at least one of the moulding tools (3, 4) from the sheet material leeway is pro-vided for free forming so that wrinkling of the tray side walls is achieved in a controlled manner. Spacer plates (13) may be positioned behind the plunger (11), to adjust its position in relation to the cavity (7) of the female moulding tool (3). The cavity may have a separate bottom plate (8) and spacer plates (9) therebelow, or screw means may be provided for adjusting the distance of the bottom of the cavity from the clamp interface and thereby varying the depth of the tray.
Abstract:
The present invention relates to paper or paperboard comprising at least one coating layer formed by extrusion coating of a PET (polyethylene terephthalate) resin, characterized in that the PET resin comprises at least 50% by weight of a PET copolymer having an intrinsic viscosity of less than 0.7 dl/g, preferably less than 0.65 dl/g, as determined according to ISO 1628.
Abstract:
A biodegradable packaging material, a method of manufacturing the same, as well as products made of the material wherein the manufacture comprises extrusion onto a fibrous substrate one or more polymer coating layers including at least one layer of a polymer blend consisting of (i) 20-95 wt-% of polylactide having a high melt index of more than 35 g/10 min (210° C.; 2.16 kg), (ii) 5-80 wt-% of polybutylene succinate (PBS) or a biodegradable derivate thereof, and (iii) 0-5 wt-% of one or more polymeric additives. The components of the blend are melted and blended in connection with the extrusion step. The goal is to improve extrudability, increase machine speed in extrusion and maintaining good adhesiveness to the substrate and good heat-sealability of the coating. The products include disposable drinking cups and board trays, as well as sealed carton packages for solids and liquids.
Abstract:
A biodegradable packaging material, a method of manufacturing the same, as well as products made of the material wherein a multilayer coating coextruded onto a fibrous substrate the multilayer coating comprising innermost and outermost layers of a blend comprising 20-95 wt-% of a higher melt index polylactide and 5-80 wt-% of another biodegradable polymer such as polybutylene succinate, and a middle layer containing a lower melt index polylactide alone. The goal is to increase machine speed in coextrusion while maintaining good adhesiveness to the substrate and good heat-sealability of the coating. The products include disposable drinking cups and board trays, as well as sealed carton packages for solids and liquids.
Abstract:
A biodegradable packaging material, a method of manufacturing the same, as well as products made of the material wherein the manufacture comprises extrusion onto a fibrous substrate one or more polymer coating layers including at least one layer of a polymer blend consisting of (i) 20-95 wt-% of polylactide having a high melt index of more than 35 g/10 min (210° C.; 2.16 kg), (ii) 5-80 wt-% of polybutylene succinate (PBS) or a biodegradable derivate thereof, and (iii) 0-5 wt-% of one or more polymeric additives. The components of the blend are melted and blended in connection with the extrusion step. The goal is to improve extrudability, increase machine speed in extrusion and maintaining good adhesiveness to the substrate and good heat-sealability of the coating. The products include disposable drinking cups and board trays, as well as sealed carton packages for solids and liquids.