Abstract:
Example embodiments relate to an image sensor configured to achieve a high photoelectric conversion efficiency and a low dark current. The image sensor includes first and second electrodes, a plurality of photodetection layers provided between the first and second electrodes, and an interlayer provided between the photodetection layers. The photodetection layers convert incident light into an electrical signal and include a semiconductor material. The interlayer includes a metallic or semi metallic material having anisotropy in electrical conductivity.
Abstract:
An electronic device includes first and second electrodes that are spaced apart from each other and a 2D material layer. The 2D material layer connects the first and second electrodes. The 2D material layer includes a plurality of 2D nanomaterials. At least some of the 2D nanomaterials overlap one another.
Abstract:
A multilayer structure includes a first material layer, a second material layer, and a diffusion barrier layer. The second material layer is connected to the first material layer. The second material layer is spaced apart from the first material layer. The diffusion barrier layer is between the first material layer and the second material layer. The diffusion barrier layer may include a two-dimensional (2D) material. The 2D material may be a non-graphene-based material, such as a metal chalcogenide-based material having a 2D crystal structure. The first material layer may be a semiconductor or an insulator, and the second material layer may be a conductor. At least a part of the multilayer structure may constitute an interconnection for an electronic device.
Abstract:
An optical device including a two-dimensional material and a method of manufacturing the same are provided. The optical device may include a barrier stack formed on a bottom channel layer, a top channel layer formed on the barrier stack, a drain electrode connected to the bottom channel layer, a source electrode formed on a substrate. The barrier stack may include two or more barrier layers, and one or more channel units at least partially interposing between the barrier layers. Channel units connected to the drain electrode and channel units connected to the source electrode may be formed, in an alternating sequence, between barrier layers included in the barrier stack. The barrier layers may each have a thickness which is less than a distance which may be traveled by electrons and holes generated by photo absorption prior to recombination. As a result, the optical device may provide improved photo separation efficiency.
Abstract:
Example embodiments relate to semiconductor devices including two-dimensional (2D) materials, and methods of manufacturing the semiconductor devices. A semiconductor device may be an optoelectronic device including at least one doped 2D material. The optoelectronic device may include a first electrode, a second electrode, and a semiconductor layer between the first and second electrodes. At least one of the first electrode and the second electrode may include doped graphene. The semiconductor layer may have a built-in potential greater than or equal to about 0.1 eV, or greater than or equal to about 0.3 eV. One of the first electrode and the second electrode may include p-doped graphene, and the other may include n-doped graphene. Alternatively, one of the first electrode and the second electrode may include p-doped or n-doped graphene, and the other may include a metallic material.
Abstract:
Example embodiments relate to nonvolatile memory devices using a 2D material, and methods of manufacturing the nonvolatile memory device. The nonvolatile memory device includes a channel layer formed on a substrate, a gate stack that includes a gate electrode, source and drain electrodes. The channel layer has a threshold voltage greater than that of a graphene layer, and the gate stack includes a 2D material floating gate that is not in contact with the channel layer. The channel layer includes first and second material layers and a first barrier layer disposed between the first and second material layers, and the first and second material layers may contact the first barrier layer.
Abstract:
A graphene layer, a method of forming the graphene layer, a device including the graphene layer, and a method of manufacturing the device are provided. The method of forming the graphene layer may include forming a first graphene at a first temperature using a first source gas and forming a second graphene at a second temperature using a second source gas. One of the first and second graphenes may be a P-type graphene, and the other one of the first and second graphenes may be an N-type graphene. The first graphene and the second graphene together form a P—N junction.
Abstract:
An electronic device includes a semiconductor layer, a tunneling layer formed of a material including a two-dimensional (2D) material so as to directly contact a certain region of the semiconductor layer, and a metal layer formed on the tunneling layer.
Abstract:
A built-in antenna of a hand-held electronic device has separable radiators. The antenna includes a first radiator mounted to a first housing portion of the electronic device, and a second radiator mounted to a second housing portion. The first radiator and second radiator are electrically connected to each other when the first and second housing portions are assembled.
Abstract:
An electronic device includes: a hinge structure; a first housing connected to the hinge structure and including a first surface and a second surface; a second housing connected to the hinge structure and including a third surface and a fourth surface; a flexible display; a touch sensor; memory; and a processor, wherein the memory stores instructions configured to cause, when executed by the processor, the electronic device to, identify first coordinate information of at least one object on a first area of the flexible display and second coordinate information of the at least one object on a second area of the flexible display by using the touch sensor; and on the basis of the identified first coordinate information and the identified second coordinate information, identify three-dimensional coordinate information of the at least one object in the space formed by the first surface and the third surface.