Abstract:
A process for direct smelting a metalliferous feed material is disclosed. Char and fuel gas are produced by pre-treating coal with an oxygen-containing gas. The fuel gas is used to heat an oxygen-containing gas and/or to produce an oxygen-containing gas in an oxygen plant. Metalliferous feed material, char, and the oxygen-containing gas are injected into a direct smelting vessel, and the metalliferous feed material is smelted to molten metal in the direct smelting vessel using the char as a source of energy and as a reductant.
Abstract:
A direct smelting process for producing metal from a metalliferous feed material is disclosed. The direct smelting process is a molten bath-based process in which smelting occurs predominantly in the metal layer, carrier gas/metalliferous feed material/solid carbonaceous material are injected into the metal layer via lances/tuyeres, and oxygen-containing gas is injected into the top space above the molten bath and post-combusts reaction gases released from the bath. The injection of metalliferous feed material and solid carbonaceous material causes molten material to be projected from the molten bath as splashes, droplets and streams and to form a transition zone. The process is characterised by forming a pipe of a solid material on an outlet end of at least one lance/tuyere while injecting the metalliferous feed material and the carbonaceous material through the lances/tuyeres and thereby extending the effective length of the lance/tuyere or the lances/tuyeres.
Abstract:
The HIsmelt process as disclosed in WO 96/31627 A1 (PCT/AU96/00197) consists of forming a molten bath of iron and slag, injecting metalliferous feed (oxides), solid carbonaceous material (coal and/or coke) and slag formers into the bath and smelting the metalliferous feed to metal. The process also consists of post-combusting the unoxidised reaction gases and transferring the generated heat to the bath to facilitate the smelting. In addition, a transition zone between the post-combustion zone and the quiescent metal zone is formed by injecting the charge together with a carrier gas into the bath, thus causing the metal and slag to be projected into the transition zone. The present application constitutes an improvement over the afore-mentioned application, in that lances/tuyères are inserted deep into the melt to provide oxygen for post-combustion of the unoxidised reaction gases and, in addition, to project splashes, droplets and streams of molten metal into the transition zone, which, in turn, fall back into the bath, thus effectively transferring heat from the post-combustion zone to the molten bath. The level of dissolved carbon in the bath is maintained at >/= 3 %, preferably > 4 %. The FeO level in the slag is maintained at . Primary post-combustion is set at > 40 %, preferably > 50 % or > 60 %.
Abstract:
A solids injection lance includes (a) a tube that defines a passageway for solid feed material to be injected through the tube and has an inlet for solid material at a rear end and an outlet for discharging solid material at a forward end of the tube and (b) a puncture detection system for detecting a puncture in the solids injection tube.
Abstract:
A method of starting a molten bath-based process for smelting a metalliferous material is disclosed. The method includes using the heat flux of water-cooled elements in lower parts of a smelting vessel to provide an indication of molten bath temperature during at least an early part of the start-up method and adjusting injection rates of oxygen-containing gas and/or carbonaceous material into the smelting vessel to control the molten bath temperature during start-up without exceeding critical heat flux levels and tripping the start-up method.
Abstract:
A material supply apparatus and process for co-injecting heated solid metalliferous material and solid carbonaceous material via a solids injection lance into a direct smelting vessel are disclosed.
Abstract:
A direct smelting plant for producing molten metal from a metalliferous feed material is disclosed. The plant includes a fixed smelting vessel to hold a molten bath of metal and slag and a gas space above the bath. The plant also includes means for supplying solids and gas feed materials to the vessel and for tapping molten material from the vessel. The plant also includes at least two platforms for supporting plant operators at different heights of the vessel. The metal tapping means and the slag tapping means are located so as to be accessible by plant operators on a cast house platform and the end metal tapping means and the end slag tapping means are located to be accessible by plant operators on an end tap platform that is at a lower height than the cast house platform.
Abstract:
A solids feed means for a direct smelting plant is disclosed. The solids feed means includes 2 or more pairs of lances for injecting solid feed materials for a direct smelting process into a direct smelting vessel. The solids feed means also includes a main supply line and a pair of branch lines for supplying solid feed material to the lances of each pair of lances with the branch lines interconnecting the main supply line and the lances of the pair of lances. The lances are arranged around the vessel in pairs of diametrically opposed lances. At least one pair of lances is provided for injecting metalliferous feed material (such as iron-containing materials, particularly iron ore fines) and at least one of the other pairs of lances is provided for injecting solid carbonaceous material (such as coal) and optionally fluxes. The pairs of lances are arranged around the vessel so that adjacent lances are lances that are provided to inject different materials.
Abstract:
A direct smelting process for producing iron and/or ferroalloys on a commercial scale in a metallurgical vessel is disclosed. The process includes injecting solid feed materials into a molten bath via multiple solids injection lances (27) and injecting post-combustion oxygen-containing gas into the vessel via one or more lance (26). The process is characterised by selecting the numbers of solids injection and oxygen gas injection lances and the relative positions of these lances and controlling process operating conditions so that: (i) an expanded molten bath zone (28) that has a raised region (70) forms around the oxygen gas injection region of the vessel between the region and the side walls of the vessel; (ii) splashes, droplets and streams of molten material project upwardly from the raised region and form a curtain (72) around the oxygen gas injection region between the region and the vessel side walls and wet the side walls; and (iii) a "free" space (29) forms around a lower end of the or each oxygen gas injection lance, the free space having a concentration of molten material that is lower than the molten material concentration in the expanded molten bath zone.