Abstract:
Flow through pressure sensors for use in fluid chromatography systems include a planar device formed from diffusion bonding of a plurality of metallic sheets and at least one sensing element. The planar device has a top surface, a bottom surface and a flow through channel. A diaphragm formed from a portion of one of the top or bottom surfaces is located adjacent to a sensing region of the flow through channel and is attached to the sensing element. The diaphragm is sized to deflect a distance in response to fluid pressure in the sensing region, which has an internal volume of less than about 25 microliters. The diaphragm and attached sensing element form a pressure sensor that measures strain or deflection of the diaphragm to calculate a pressure within the sensing region.
Abstract:
The present invention provides a method and apparatus for substantially eliminating destructive transients of pressure or flow rate which can degrade the efficiency and useful lifetime of chromatography columns. The present invention enables a substantially constant flow of mobile phase liquid to be maintained through the chromatography system by eliminating the flow blockage interval associated with the actuation of sample injection valves. The present invention further provides a method to reduce the pressure and flow rate transients associated with pressurization of the sample loop contents when the sample loop is introduced to chromatography system delivery pressure.
Abstract:
The present invention provides a method and apparatus for substantially eliminating destructive transients of pressure or flow rate which can degrade the efficiency and useful lifetime of chromatography columns. The present invention enables a substantially constant flow of mobile phase liquid to be maintained through the chromatography system by eliminating the flow blockage interval associated with the actuation of sample injection valves. The present invention further provides a method to reduce the pressure and flow rate transients associated with pressurization of the sample loop contents when the sample loop is introduced to chromatography system delivery pressure.
Abstract:
A freeze-thaw valve is provided using a Peltier heat pump where the thermal short-circuit path between a cooled thermal mass and a heated thermal mass is reduced or absent and the valve state transition time is minimized. The freeze-thaw valve comprises a Peltier heat pump mounted to a heat exchange surface that comprises a cross-drilled copper water jacket or manifold. The Peltier heat pump is operated to maintain a cooled thermal mass at a substantially constant low temperature. A resistance heating element is used to produce a heated thermal mass. The freeze-thaw segment of a fluid conduit is commutated to contact either the heated or the cooled thermal mass to thaw and therefore open the valve or cool and thus close the valve. The operation of the Peltier heat pump at a constant temperature avoids problems inherent in the use of a Peltier heat pump to both heat and cool a freeze thaw segment.
Abstract:
One embodiment of the present coupler comprises two or more conduits for transporting fluid. Each of the two or more conduits has at least one end defining an opening in said conduit, and each of the conduits has an axis running parallel to the flow of fluid through said conduit. The coupler further comprises a housing body having a first housing planar surface. The housing body holds the two or more conduits in alignment wherein the axis of each conduit is substantially parallel, and at least one end of each conduit is aligned about said first housing planar surface. And, the coupler has a cap element having a cap planar surface. The cap planar surface is fixed to the first housing planar surface in sealed engagement. At least one of the first housing planar surface and the cap planar surface has a channel in fluid communication with the opening in the conduits. The channel allows two or more fluid streams, each fluid stream defined by one of said conduits, to be placed in communication.
Abstract:
A modular flow cell having a high optical throughput, a long optical path length and a small cross-section. The modular flow cell configuration includes remote ports or connections for liquid and light input, and liquid and light output. The flow cell includes a flow cell body having two ends, each with a respective end interface secured thereto. The flow cell is configured to form a part of a modular flow cell assembly. The flow cell body includes a channel having a through-aperture with an inner surface. A light guiding material, e.g. a transparent fluoropolymer material having a refractive index less than the refractive index of common chromatography solvents, is disposed proximate to the channel to form a light guiding through-aperture in the flow cell body. The channel is formed of materials that can provide the necessary mechanical strength and a fluid seal, and more particularly, includes materials such as polyetheretherketone (PEEK), which can develop a fluid seal at the interface between the flow cell body end and each end interface.
Abstract:
A fluid delivery method and apparatus implementing active phasing to actively restore the substantially exact mechanical positions of driven components in a delivery system in order to precisely reproduce the mechanical signature and hydraulic characteristics of the system from run to run without perturbing output flow. The delivery system is configured to intelligently drive pump pistons to a known position and to deliver fluid(s) at a known pressure, and includes a plurality of pump modules each including motor driven syringes having respective pistons configured to reciprocate under control of a control mechanism. Pump phasing is accomplished through a mechanism of compensation delivery of the syringes. An independent, motor-driven syringe of any given pump in a plurality of pumps in a system has the ability to act as a delivering syringe to maintain a prescribed output flow while one other syringe of each of the plurality of pumps is repositioned under load. With the delivering syringe maintaining output flow, the syringe which is repositioning, i.e. being phased, can substantially simultaneously arrive at a destination position and at a destination pressure.