Abstract:
A combustor wall is provided for a turbine engine. The combustor wall includes a shell, a heat shield and a combustion chamber. The heat shield is connected to the shell by a bonded connection, and defines a portion of the combustion chamber. A cooling cavity is defined between the shell and the heat shield.
Abstract:
A gas turbine engine according to an exemplary aspect of the present disclosure includes, a shaft including at least one bearing, a speed change device in communication with the shaft, a first lubrication system in communication with the at least one bearing and a second lubrication system in communication with the speed change device.
Abstract:
A fan section to be incorporated into a gas turbine engine has a rotor and a plurality of fan blades. The fan blades deliver air into a bypass duct defined inwardly of the nacelle and into a core engine. There are static vanes inward of the nacelle. A surface of the fan section is provided with a removable film material. A gas turbine engine and a method of refurbishing a surface are also disclosed.
Abstract:
An oil cooling system and method are provided for use with respect to a lubricated mechanical system within a bypass configured gas turbine engine. A surface cooler is fluidly linked to the lubricated mechanical system to receive oil from the lubricated mechanical system for cooling and reuse. In an embodiment, the surface cooler is mounted on an existing surface within the bypass airflow path of the bypass configured gas turbine engine to provide effective cooling while avoiding the introduction of additional aerodynamic disturbances in the bypass path. In an embodiment, the surface cooler is mounted on the fan casing or on a fan exit guide vane.
Abstract:
A method of manufacturing a military engine includes the steps of designing a commercial engine core, including a combustor, a high pressure compressor driven by a high pressure turbine, and a low pressure turbine designed to drive a low pressure compressor, and a fan through a gear reduction. A high speed fan is attached to the low pressure turbine, such that the combustor, high pressure compressor, low and high pressure turbines from an engine designed for commercial purposes is utilized for military purposes. A gas turbine engine is also disclosed.
Abstract:
A turbofan engine that includes a first flowpath, a second flowpath, a third flowpath, and a third flowpath exhaust nozzle is provided. The first flowpath is radially inboard of the second flowpath at a location upstream of a core section of the turbofan engine. The third flowpath is radially outboard of the second flowpath at the location upstream of the core section. The third flowpath exhaust nozzle defines a plurality of third flowpath exhaust exit ports through which gas traveling along the third flowpath may be discharged. An area or a geometry of each of the plurality of third flowpath exhaust exit ports is independently and selectively adjustable. A method for operating the turbofan engine includes independently and selectively adjusting an area or a geometry of at least one of the plurality of third flowpath exhaust exit ports to achieve a desired engine operation.