Abstract:
An oil cooling system and method are provided for use with respect to a lubricated mechanical system within a bypass configured gas turbine engine. A surface cooler is fluidly linked to the lubricated mechanical system to receive oil from the lubricated mechanical system for cooling and reuse. In an embodiment, the surface cooler is mounted on an existing surface within the bypass airflow path of the bypass configured gas turbine engine to provide effective cooling while avoiding the introduction of additional aerodynamic disturbances in the bypass path. In an embodiment, the surface cooler is mounted on the fan casing or on a fan exit guide vane.
Abstract:
A reverse-core turbofan engine including a propulsor section including a fan and a fan-tip turbine configured to deliver air to a core duct, including a first portion, disposed aft of the propulsor section, and direct air aft, toward an inlet of a reverse-core gas generator, and a second portion, configured to receive air from an exit of the gas generator and direct the air forward and radially outward of the propulsor, toward the fan-tip turbine in the propulsor, thereby driving the propulsor.
Abstract:
Improved annular components and improved methods for assembling annular components into a turbine engine are described with respect to an axial compressor having a plurality of annular compressor rotor airfoil assemblies (120) as an example. Each compressor rotor airfoil assembly comprises an annular rotor portion (122), a spacer portion (124) extending axially therefrom and a plurality of airfoils (52) extending radially thereform. The plurality of airfoils may be integrally formed with the annular portion. The compressor rotor airfoil assemblies are stacked sequentially on a center-tie (134) or outer circumferential tie. The spacer portion of one compressor rotor airfoil assembly (120a) abuts the annular rotor portion of the adjacent compressor rotor airfoil assembly (120b) to retain one another on the center-tied outer circumferential tie. By stacking the compressor rotor airfoil assemblies sequentially and then retaining them, the typical split cases, flanges and rotor bolts may be eliminated.
Abstract:
A turbine component comprises a platform and an airfoil extending radially away from the platform and extending from a leading edge to a trailing edge. A leading edge portion defines the leading edge of the airfoil and a trailing edge portion including the trailing edge. One of the leading and trailing edge portions also includes the platform. The leading edge portion is formed of a first material distinct from a second material forming the trailing edge portion. The first material has an operating temperature capability at least 100F higher than that of the second material. A gas turbine engine is also disclosed.
Abstract:
The present disclosure relates generally to turbomachinery in which a rotating component is disposed adjacent a counter-rotating component in order to achieve a relative rotational velocity that is higher than would be achieved with a rotating component disposed adjacent to a stationary component.
Abstract:
Improved annular components and improved methods for assembling annular components into a turbine engine are described with respect to an axial compressor having a plurality of annular compressor rotor airfoil assemblies (120) as an example. Each compressor rotor airfoil assembly comprises an annular rotor portion (122), a spacer portion (124) extending axially therefrom and a plurality of airfoils (52) extending radially therefrom. The plurality of airfoils may be integrally formed with the annular portion. The compressor rotor airfoil assemblies are stacked sequentially on a center-tie (134) or outer circumferential tie. The spacer portion of one compressor rotor airfoil assembly (120a) abuts the annular rotor portion of the adjacent compressor rotor airfoil assembly (120b) to retain one another on the center-tied outer circumferential tie. By stacking the compressor rotor airfoil assemblies sequentially and then retaining them, the typical split cases, flanges and rotor bolts may be eliminated.
Abstract:
A variable area fan nozzle for use with a gas turbine engine system includes a nozzle section that is movable between a plurality of positions to change an effective area associated with a bypass airflow through a fan bypass passage of a gas turbine engine. A protective coating is disposed on the nozzle section and resists change in the effective area of the nozzle section caused by environmental conditions.
Abstract:
Gas turbine engine systems involving tip fans are provided. In this regard, a representative gas turbine engine system includes: a multi-stage fan having a first rotatable set of blades and a second counter-rotatable set of blades, the second rotatable set of blades defining an inner fan and a tip fan and being located downstream of the first set of rotatable blades; and an epicyclic differential gear assembly operative to receive a torque input and differentially apply the torque input to the first set of blades and the second set of blades.
Abstract:
A tip turbine engine (10) includes a combustor (30) radially outward of a fan. In order to reduce the heat transfer from the combustor and the high-energy gas stream generated by the combustor, a cold air ejector (38) radially outward of the combustor extends from a forward end of the nacelle (12) to a point rearward of the combustor and an exhaust mixer (110). The cold air ejector includes an annular inlet (17) at the forward end of the nacelle. The cold air ejector draws air over the outer engine case (39) to provide a boundary between the nacelle and the hot outer engine case. The layer of air being pulled past the engine case ejects the heat, thereby preventing the heat from escaping into the nacelle or engine bay.