Abstract:
A semiconductor device includes a semiconductor substrate, at least a first fin structure, at least a second fin structure, a first gate, a second gate, a first source/drain region and a second source/drain region. The semiconductor substrate has at least a first active region to dispose the first fin structure and at least a second active region to dispose the second fin structure. The first/second fin structure partially overlapped by the first/second gate has a first/second stress, and the first stress and the second stress are different from each other. The first/second source/drain region is disposed in the first/second fin structure at two sides of the first/second gate.
Abstract:
A semiconductor structure includes a capacitor. The capacitor includes a bottom electrode, a first high-k dielectric layer, a second high-k dielectric layer and a top electrode. The bottom electrode includes a first layer and a second layer disposed on the first layer. The bottom electrode is formed of TiN. The first layer has a crystallization structure. The second layer has an amorphous structure. The first high-k dielectric layer is disposed on the bottom electrode. The first high-k dielectric layer is formed of TiO2. The second high-k dielectric layer is disposed on the first high-k dielectric layer. The second high-k dielectric layer is formed of a material different from TiO2. The top electrode is disposed on the second high-k dielectric layer.
Abstract:
A method for fabricating semiconductor device with fin-shaped structure is disclosed. The method includes the steps of: forming a fin-shaped structure on a substrate; forming a first dielectric layer on the substrate and the fin-shaped structure; depositing a second dielectric layer on the first dielectric layer; etching back a portion of the second dielectric layer; removing part of the first dielectric layer to expose a top surface and part of the sidewall of the fin-shaped structure; forming an epitaxial layer to cover the exposed top surface and part of the sidewall of the fin-shaped structure; and removing a portion of the second dielectric layer.
Abstract:
A method of forming an inter-level dielectric layer including the following step is provided. Two gate structures are formed on a substrate. A first oxide layer is formed to conformally cover the two gate structures and the substrate. The first oxide layer is etched ex-situ by a high density plasma (HDP) etching process. A second oxide layer is formed in-situ on the first oxide layer and fills a gap between the two gate structures by a high density plasma (HDP) depositing process.
Abstract:
A multigate field effect transistor includes two fin-shaped structures and a dielectric layer. The fin-shaped structures are located on a substrate. The dielectric layer covers the substrate and the fin-shaped structures. At least two voids are located in the dielectric layer between the two fin-shaped structures. Moreover, the present invention also provides a multigate field effect transistor process for forming said multigate field effect transistor including the following steps. Two fin-shaped structures are formed on a substrate. A dielectric layer covers the substrate and the two fin-shaped structures, wherein at least two voids are formed in the dielectric layer between the two fin-shaped structures.
Abstract:
The present invention provides a method of forming an opening on a semiconductor substrate. First, a substrate is provided. Then a dielectric layer and a cap layer are formed on the substrate. A ratio of a thickness of the dielectric layer and a thickness of the cap layer is substantially between 15 and 1.5. Next, a patterned boron nitride layer is formed on the cap layer. Lastly, an etching process is performed by using the patterned hard mask as a mask to etch the cap layer and the dielectric layer so as to form an opening in the cap layer and the dielectric layer.
Abstract:
A non-planar semiconductor structure includes a substrate, at least two fin-shaped structures, at least an isolation structure, and a plurality of epitaxial layers. The fin-shaped structures are located on the substrate. The isolation structure is located between the fin-shaped structures, and the isolation structure has a nitrogen-containing layer. The epitaxial layers respectively cover a part of the fin-shaped structures and are located on the nitrogen-containing layer. Anon-planar semiconductor process is also provided for forming the semiconductor structure.
Abstract:
An ReRAM structure includes a dielectric layer. A first ReRAM and a second ReRAM are disposed on the dielectric layer. The second ReRAM is at one side of the first ReRAM. A trench is disposed in the dielectric layer between the first ReRAM and the second ReRAM. The first ReRAM includes a bottom electrode, a variable resistive layer and a top electrode. The variable resistive layer is between the bottom electrode and the top electrode. A width of the bottom electrode is smaller than a width of the top electrode. The width of the bottom electrode is smaller than a width of the variable resistive layer.
Abstract:
The present invention discloses a semiconductor structure with an epitaxial layer, including a substrate, a blocking layer on said substrate, wherein said blocking layer is provided with predetermined recess patterns, multiple recesses formed in said substrate, wherein each of said multiple recesses is in 3D diamond shape with a centerline perpendicular to a surface of said substrate, a buffer layer on a surface of each of said multiple recesses, and an epitaxial layer comprising a buried portion formed on said buffer layer in each of said multiple recesses and only one above-surface portion formed directly above said blocking layer and directly above said recess patterns of said blocking layer, and said above-surface portion directly connects said buried portion in each of said multiple recesses, and a first void is formed inside each of said buried portions of said epitaxial layer in said recess.
Abstract:
An ReRAM structure includes a dielectric layer. A first ReRAM and a second ReRAM are disposed on the dielectric layer. The second ReRAM is at one side of the first ReRAM. A trench is disposed in the dielectric layer between the first ReRAM and the second ReRAM. The first ReRAM includes a bottom electrode, a variable resistive layer and a top electrode. The variable resistive layer is between the bottom electrode and the top electrode. A width of the bottom electrode is smaller than a width of the top electrode. The width of the bottom electrode is smaller than a width of the variable resistive layer.