Abstract:
The present invention relates to control of a wind turbine in a stop process where a stop controller is used to pitch the blades at a number of pre-set pitch rates including a first pitch rate and a second pitch rate. The stop controller is arranged to access desired pitch angles of the stopping process and add an envelope band to the desired pitch angles. In the stop process, pitching at a selected pitch rate among the number of pre-set pitch rates is performed, and the pitch rate is changed according to criteria to keep the pitch value within the envelope band.
Abstract:
This invention relates to a method of controlling a wind turbine comprising a tower supporting a rotor comprising a plurality of pitch-adjustable rotor blades. The method comprises obtaining a movement signal indicative of a vibrational movement of the tower. An actuator signal is then determined based on the movement signal, the actuator signal being determined to produce a desired force to counteract the vibrational movement of the tower. A pitch reference offset signal for each one of the plurality of pitch-adjustable rotor blades is then determined based on the actuator signal. An integration is then applied to the pitch reference offset signals to determine modified pitch reference offset signals based on the integrated pitch reference offset signals. A pitch signal for each one of the plurality of pitch-adjustable rotor blades is the determined based on the modified pitch reference offset signals, the pitch signals being arranged to adjust the pitch-adjustable rotor blades to provide the force that counteracts the vibrational movement of the tower.
Abstract:
A method is provided for controlling the shutdown of a wind turbine of the type having a rotor, the rotor comprising one or more wind turbine blades. The method comprises dynamically determining a rotor speed reference; obtaining a measure of the rotor speed of the rotor; determining an error between the rotor speed reference and the rotor speed of the rotor; and controlling a pitch of one or more of the wind turbine blades based on the determined error. A corresponding wind turbine controller and a wind turbine including such a controller are also provided.
Abstract:
The present invention relates to control of wind turbines where a fatigue load measure is taken into account. Control of a wind turbine is described where a control trajectory is calculated based on a fatigue load measure, the fatigue load measure being determined from a predicted operational trajectory. In embodiments the predicted operational trajectories are calculated by using a model predictive control (MPC) routine, and the fatigue load measure includes a rainflow count algorithm.
Abstract:
A control method and apparatus for safe mode operation at high yaw error is described. A yaw error detection block (2) detects a yaw error. A load-reducing controller (4), for mitigating one or more structural loads associated with the yaw error, operates when a yaw error is detected, to engage a safe mode in which it operates to prevent the pitch angle applied to the individual wind turbine blades from falling below a minimum non-zero value.
Abstract:
A method for controlling a wind turbine during shutdown is disclosed, said wind turbine comprising a rotor carrying at least three wind turbine blades adapted to be pitched individually. A first shutdown strategy is initially selected, and subsequently a second shutdown strategy is selected, the second shutdown strategy ensuring alignment of the pitch angles of the wind turbine blades. The time for switching from the first shutdown strategy to the second shutdown strategy is calculated on the basis of a misalignment of the pitch angles, and in order to align the pitch angles before an estimated point in time where the pitch angles must be aligned, in order to avoid excessive asymmetric loads on the wind turbine blades and/or on the rotor. According to an alternative embodiment, the first shutdown strategy includes moving the wind turbine blades towards a feathered position at identical pitch rates.
Abstract:
The invention provides a shutdown controller for a wind turbine. To improve the estimation of a state of the wind turbine,the controller comprises at least two sensors being adapted to provide sensor data significant for different mechanical states in the wind turbine. The controller can provide an estimated state of the wind turbine based on the sensor data from the at least two sensors and compare the state of the wind turbine with a predefined detection limit to provide a shutdown signal if the estimated state is outside the detection limit.
Abstract:
A method for controlling a wind turbine during a safety operation is disclosed. A safety pitch control system is provided to pitch the blades individually at a number of pre-set approximately constant pitch rates including a first pitch rate and a second pitch rate lower than the first pitch rate. In response to a command for initiating the safety operation the blades are pitched towards a feathering position by the safety pitch control system including the blades being pitched according to a safety pitch strategy wherein for all the blades the pitch rate is changed between the first pitch rate and the second pitch rate according to a function of each blade azimuthal position. This is done such that each blade in turn is closer to the feathering position than the others.
Abstract:
The preset invention relates to wind turbines and, in particular inclining a wind turbine from the vertical position. A tower (102) of a wind turbine may be inclined from the vertical position in order to reduce the loads on the tower (102).