Abstract:
The present invention relates to a power system having a plurality wind turbine generators and a power plant controller arranged to communicate with the plurality of wind turbines generators, where each of the plurality of wind turbine generator being related to a wind turbine controller, the wind turbine controller being arranged to control an active power output in its related wind turbine generator according to an active power set point received from the wind power plant controller; a first subset of wind turbine generators operating at an active power output unrestricted of the active power set point; and a second subset of wind turbine generators operating according to an active power set point; and wherein the wind power plant controller communicates the active power set point, in accordance with the active power output of the first subset of the plurality of wind turbines generators, so as to reduce active power fluctuation of the aggregated active power output of the first and second subset of the plurality of wind turbines generators. The present invention also relates to method accordingly.
Abstract:
Systems, methods, and computer program products for providing an inertial response by a wind power system to power fluctuations in an electrical grid. The system includes a synthetic inertial response generator configured to generate a power offset in response to fluctuations in grid voltage. The power offset signal is generated by determining a quadrature component the grid voltage using an internal reference voltage having an angular frequency and phase angle that is synchronized to the electrical grid by a control loop. The quadrature component is used to determine a synchronous power level. A control loop error signal is produced by the difference between the synchronous power level and the wind turbine system power output. Changes in the grid frequency produce an error signal that is added to the power set point of wind turbine system output controllers to provide a power system inertial power output response.
Abstract:
A variable speed wind turbine is arranged to provide additional electrical power to counteract non-periodic disturbances in an electrical grid. A controller monitors events indicating a need to increase the electrical output power from the wind turbine to the electrical grid. The controller is arranged to control the wind turbine as follows: after an indicating event has been detected, the wind turbine enters an overproduction period in which the electrical output power is increased, wherein the additional electrical output power is taken from kinetic energy stored in the rotor and without changing the operation of the wind turbine to a more efficient working point. When the rotational speed of the rotor reaches a minimum value, the wind turbine enters a recovery period to re-accelerate the rotor to the nominal rotational speed while further contributing to the stability of the electrical grid by outputting at least a predetermined minimum electrical power.
Abstract:
The present invention relates to method for operating a power plant, with at least one wind turbine generator arranged for supplying power to an electrical grid, at least one energy storage device arranged for supplying power to the electrical grid, and a power plant controller, the method comprises, measuring repetitively measurement sets of at least one electrical parameter from the electrical grid, and calculating, in respect the measurement sets of the at least one electrical parameter, a change in active and/or a required change in reactive power at a point of common coupling, and calculating and dispatching of a first control reference signal to the at least one wind turbine generator and a second control reference signal to the at least one energy storage device, for providing ancillary service functionalities to the electrical grid. The invention also relates to a power plant with at least one wind turbine generator for supplying power to an electrical grid, at least one energy storage device for supplying power to the electrical grid, and a power plant controller for providing ancillary service functionalities to the electrical grid.