Abstract:
Methods of establishing electrical communication with substrate node locations, methods of forming DRAM circuitry, and semiconductor assemblies are described. In one implementation, a contact opening is formed over a substrate node location with which electrical communication is desired. The contact opening has a base over which a refractory metal layer is formed. A refractory metal silicide layer is formed over the refractory metal layer, and the substrate is exposed to conditions effective to convert the refractory metal layer to a refractory metal silicide. In one embodiment, the refractory metal layer and the refractory metal silicide layer are chemical vapor deposited. In another embodiment, the refractory metal silicide layer comprises a silicide of the refractory metal layer. In a preferred implementation, the refractory metal layer comprises titanium and the refractory metal silicide layer comprises titanium silicide. In another implementation, a composite layer is formed over a substrate and comprises an underlying refractory metal and an overlying silicide layer. The composite layer is annealed to react the underlying metal with a silicon-comprising substrate and form a refractory metal silicide of the underlying refractory metal in contact with the overlying silicide layer. The invention can achieve reductions in silicon consumption in the diffusion regions and maintain low source/drain diode leakage.
Abstract:
A multilayer source provides charge carriers to a multitier channel connector. The source includes a metal silicide layer on a substrate and a metal nitride layer between the metal silicide layer and the channel. The metal silicide and the metal nitride are processed without an intervening oxide layer between them. In one embodiment, the source further includes a silicon layer between the metal nitride layer and the channel. The silicon layer can also be processed without an intervening oxide layer. Thus, the source does not have an intervening oxide layer from the substrate to the channel.
Abstract:
Methods for selectively oxidizing a semiconductor structure include generating a gas cluster ion beam comprising an oxidizing source gas, directing the gas cluster ion beam to a region of a substrate adjacent a conductive line and exposing the region to the gas cluster ion beam including an oxidizing matter. Utilizing the gas cluster ion beam enables selective oxidation of a targeted region at temperatures substantially lower than those of typical oxidation processes thus, reducing or eliminating oxidation of the conductive line. Semiconductor devices including transistors formed using such methods are also disclosed.
Abstract:
Photonic nanostructures, light absorbing apparatuses, and devices are provided. The photonic nanostructures include a plurality of photonic nanobars configured to collectively absorb light over an excitation wavelength range. At least two of the photonic nanobars of the plurality have lengths that are different from one another. Each photonic nanobar of the plurality has a substantially small width and a substantially small height relative to the different lengths. A method for forming such may comprise forming a plurality of first photonic nanobars comprising a width and a height that are smaller than a length of the plurality of first photonic nanobars, and forming a plurality of second photonic nanobars comprising a width and a height that are smaller than a length of the second photonic nanobar, wherein the lengths of the plurality of first photonic nanobars and the lengths of the plurality of second photonic nanobars are different from one another.
Abstract:
The invention includes methods of utilizing compositions containing iridium and tantalum in semiconductor constructions, and includes semiconductor constructions comprising compositions containing iridium and tantalum. The compositions containing iridium and tantalum can be utilized as barrier materials, and in some aspects can be utilized as barriers to copper diffusion.
Abstract:
The invention included to methods of forming CoSi2, methods of forming field effect transistors, and methods of forming conductive contacts. In one implementation, a method of forming CoSi2 includes forming a substantially amorphous layer comprising MSix over a silicon-containing substrate, where “M” comprises at least some metal other than cobalt. A layer comprising cobalt is deposited over the substantially amorphous MSix-comprising layer. The substrate is annealed effective to diffuse cobalt of the cobalt-comprising layer through the substantially amorphous MSix-comprising layer and combine with silicon of the silicon-containing substrate to form CoSi2 beneath the substantially amorphous MSix-comprising layer. Other aspects and implementations are contemplated.
Abstract:
Some embodiments include methods of forming charge storage transistor gates and standard FET gates in which common processing is utilized for fabrication of at least some portions of the different types of gates. FET and charge storage transistor gate stacks may be formed. The gate stacks may each include a gate material, an insulative material, and a sacrificial material. The sacrificial material is removed from the FET and charge storage transistor gate stacks. The insulative material of the FET gate stacks is etched through. A conductive material is formed over the FET gate stacks and over the charge storage transistor gate stacks. The conductive material physically contacts the gate material of the FET gate stacks, and is separated from the gate material of the charge storage transistor gate stacks by the insulative material remaining in the charge storage transistor gate stacks. Some embodiments include gate structures.
Abstract:
A method for fabricating a transistor gate with a conductive element that includes cobalt silicide includes use of a sacrificial material as a place-holder between sidewall spacers of the transistor gate until after high temperature processes, such as the fabrication of raised source and drain regions, have been completed. In addition, semiconductor devices (e.g., DRAM devices and NAND flash memory devices) with transistor gates that include cobalt silicide in their conductive elements are also disclosed, as are transistors with raised source and drain regions and cobalt silicide in the transistor gates thereof. Intermediate semiconductor device structures that include transistor gates with sacrificial material or a gap between upper portions of sidewall spacers are also disclosed.
Abstract:
The invention includes methods of forming metal silicide having bulk resistance of less than 30 micro-ohms-centimeter. The metal of the metal silicide can be selected from Groups 3, 4, 8, 9 and 10 of the periodic table, with an exemplary metal being titanium. An exemplary method includes forming a titanium-containing layer directly against tantalum silicide. After the titanium-containing layer is formed directly against the tantalum silicide, titanium of the titanium-containing layer is converted to titanium silicide. Constructions formed in accordance with methodology of the present invention can be incorporated into circuitry associated with semiconductor devices, such as, for example, wordlines and bitlines.
Abstract:
An etching method for use in integrated circuit fabrication includes providing a metal nitride layer on a substrate assembly, providing regions of cobalt silicide on first portions of the metal nitride layer, and providing regions of cobalt on second portions of the metal nitride layer. The regions of cobalt and the second portions of the metal nitride layer are removed with at least one solution including a mineral acid and a peroxide. The mineral acid may be selected from the group including HCl, H2SO4, H3PO4, HNO3, and dilute HF (preferably the mineral acid is HCl) and the peroxide may be hydrogen peroxide. Further, the removal of the regions of cobalt and the second portions of the metal nitride layer may include a one step process or a two step process. In the one step process, the regions of cobalt and the second portions of the metal nitride layer are removed with a single solution including the mineral acid and the peroxide. In the two step process, the regions of cobalt are removed with a first solution containing a mineral acid and a peroxide and the second portions of the metal nitride layer are removed with a second solution containing a peroxide. An etching composition including a mineral acid and a peroxide, preferably, HCl and hydrogen peroxide, is also described. The etching methods and compositions may be used in forming structures such as word lines, gate electrodes, local interconnects, etc.
Abstract translation:用于集成电路制造的蚀刻方法包括在衬底组件上提供金属氮化物层,在金属氮化物层的第一部分上提供钴硅化物的区域,以及在金属氮化物层的第二部分上提供钴区域。 用至少一种包含无机酸和过氧化物的溶液除去钴的区域和金属氮化物层的第二部分。 无机酸可以选自HCl,H 2 SO 4,H 3 PO 4,SO 3, HNO 3,稀释HF(优选无机酸为HCl),过氧化物可以是过氧化氢。 此外,去除钴的区域和金属氮化物层的第二部分可以包括一步法或两步法。 在一步法中,用包含无机酸和过氧化物的单一溶液除去钴的区域和金属氮化物层的第二部分。 在两步法中,用含有无机酸和过氧化物的第一溶液除去钴的区域,并用含有过氧化物的第二溶液除去金属氮化物层的第二部分。 还描述了包含无机酸和过氧化物,优选HCl和过氧化氢的蚀刻组合物。 蚀刻方法和组合物可以用于形成诸如字线,栅电极,局部互连等的结构。