Abstract:
본 발명은 로봇 청소기에 관한 것이다. 본 발명에 따른 로봇 청소기는 외형을 형성하는 메인바디; 상기 메인바디를 이동시키는 이동수단; 바닥면에 하측면의 적어도 일부가 접촉 가능하게 구비되는 청소모듈; 및 상기 청소모듈의 하측면이 상기 바닥면과 형성하는 경사각을 조절하는 모듈구동부를 포함한다.
Abstract:
Disclosed is a cleaner comprising a cleaner body, a front wheel rotatably provided in a front portion of the cleaner body, a rear wheel rotatably provided in a rear portion of the cleaner body, a first member attached to an outer circumferential surface of the front wheel and configured to contact with a cleaning object surface, a second member attached to an outer circumferential surface of the rear wheel and configured to contact with the cleaning object surface, a front motor rotating the front wheel, a rear motor rotating the rear wheel and a controller driving the front motor and the rear motor, wherein the controller controls the front motor and the rear motor to become rotated in the opposite directions while cleaning is performed.
Abstract translation:本发明公开了一种吸尘器,其包括吸尘器主体,可旋转地设置在吸尘器主体的前部中的前轮,可旋转地设置在吸尘器主体的后部中的后轮,第一构件, 前轮的外周面,与清扫对象面接触;第二部件,安装在后轮的外周面上,与清扫对象面接触;前轮电动机,使前轮旋转; a 后轮马达,用于旋转后轮;以及控制器,用于驱动前轮马达和后轮马达,其中,控制器控制前轮马达和后轮马达在清洁执行时沿相反方向旋转。 p>
Abstract:
A resilient compressible roller rotatably engaged with an autonomous coverage robot, the resilient compressible roller comprising: a rigid drive shaft; a resilient tubular member having a longitudinal axis and including an outer surface, one or more vanes extending outwardly from the outer surface, a hub disposed along the longitudinal axis of the tubular member within the outer surface, the hub having one or more engagement elements formed therein for engaging securely with the rigid drive shaft, a plurality of resilient curvilinear spokes extending between an inner surface of the flexible tubular member and the hub.
Abstract:
An autonomous mobile robot comprise: a chassis having a drive system mounted therein in communication with a control system; a cleaning head assembly having a lower cage and mounted to the chassis; a debris collection bin mounted to the chassis; a vacuum airway having a vacuum inlet and an airway outlet positioned adjacent the debris collection bin, and configured to deliver debris from the cleaning head assembly to a debris collection bin, the vacuum airway extending between the cleaning assembly and debris collection bin and being in fluid communication with an impeller disposed within the debris collection bin; and a cleaning head module connected to the chassis and having a front roller including a front shape-changing resilient tube and an adjacent rear roller including a rear shape-changing resilient tube rotatably opposing therewith beneath the vacuum inlet. The surface of the front shape-changing tube and the surface rear shape-changing tube are separated by a narrowest air gap of less than 1 cm, such that the vacuum draw directed from the vacuum airway is concentrated within the narrowest air gap.
Abstract:
An autonomous mobile robot comprise: a chassis having a drive system mounted therein in communication with a control system; a cleaning head assembly having a lower cage and mounted to the chassis; a debris collection bin mounted to the chassis; a vacuum airway having a vacuum inlet and an airway outlet positioned adjacent the debris collection bin, and configured to deliver debris from the cleaning head assembly to a debris collection bin, the vacuum airway extending between the cleaning assembly and debris collection bin and being in fluid communication with an impeller disposed within the debris collection bin; and a cleaning head module connected to the chassis and having a front roller including a front shape-changing resilient tube and an adjacent rear roller including a rear shape-changing resilient tube rotatably opposing therewith beneath the vacuum inlet. The surface of the front shape-changing tube and the surface rear shape-changing tube are separated by a narrowest air gap of less than 1 cm, such that the vacuum draw directed from the vacuum airway is concentrated within the narrowest air gap.
Abstract:
An autonomous mobile robot comprise: a chassis having a drive system mounted therein in communication with a control system; a cleaning head assembly having a lower cage and mounted to the chassis; a debris collection bin mounted to the chassis; a vacuum airway having a vacuum inlet and an airway outlet positioned adjacent the debris collection bin, and configured to deliver debris from the cleaning head assembly to a debris collection bin, the vacuum airway extending between the cleaning assembly and debris collection bin and being in fluid communication with an impeller disposed within the debris collection bin; and a cleaning head module connected to the chassis and having a front roller including a front shape-changing resilient tube and an adjacent rear roller including a rear shape-changing resilient tube rotatably opposing therewith beneath the vacuum inlet. The surface of the front shape-changing tube and the surface rear shape-changing tube are separated by a narrowest air gap of less than 1 cm, such that the vacuum draw directed from the vacuum airway is concentrated within the narrowest air gap.
Abstract:
Die Erfindung betrifft ein selbstfahrendes oder zu verfahrendes Kehrgerät (1) mit einer Kehrbürste (6) und einem zugeordneten Schmutzsammelraum (9). Um ein Kehrgerät der in Rede stehenden Art dahingehend verbessert auszugestalten, dass dieses gegenüber den bekannten Geräten eine vollständige Reinigung ermöglicht, wird eine Flüssigkeits-Auftragseinrichtung (10) vorgeschlagen, die in Verfahrrichtung ( r) hinter der Kehrbürste (6) angeordnet ist und eine weiter dahinter angeordnete Entfeuchtungs-Einrichtung (17).
Abstract:
An autonomous coverage robot has a chassis having forward and rearward portions. A drive system is mounted to the chassis and configured to maneuver the robot over a cleaning surface. A cleaning assembly is mounted on the forward portion of the chassis and at has two counter-rotating rollers mounted therein for retrieving debris from the cleaning surface, the longitudinal axis of the forward roller lying in a first horizontal plane positioned above a second horizontal plane on which the longitudinal axis of the rearward roller lies. The cleaning assembly is movably mounted to the chassis by a linkage affixed at a forward end to the chassis and at a rearward end to the cleaning assembly. When the robot transitions from a firm surface to a compressible surface, the linkage lifts the cleaning assembly from the cleaning surface. The linkage lifts the cleaning assembly substantially parallel to the cleaning surface but such that the front roller lifts at a faster rate than the rearward roller.
Abstract:
A cleaning robot system (5) includes a robot (10) and a robot maintenance station (100,1100,1200,1300,1400). The robot (10) includes a chassis (31), a drive system (45) configured to maneuver the robot (10) as directed by a controller (49), and a cleaning assembly (43) including a cleaning assembly housing (40) and a driven cleaning roller (60,65). The robot maintenance station (100,1100,1200,1300,1400) includes a station housing (120) and a docking platform (122) configured to support the robot (10) when docked. A mechanical agitator (510,520) engages the roller (60,65) of the robot (10) with the robot (10) docked. The agitator (510,520) includes an agitator comb (511) having multiple teeth (512) configured to remove accumulated debris from the roller (60,65) as the agitator comb (511) and roller (60,65) are moved relative to one another. The robot maintenance station (100,1100,1200,1300,1400) includes a collection bin (150) arranged to receive and hold debris removed by the mechanical agitator (510,520).
Abstract:
A cleaning robot system (5) includes a robot (10) and a robot maintenance station (100,1100,1200,1300,1400). The robot (10) includes a chassis (31), a drive system (45) configured to maneuver the robot (10) as directed by a controller (49), and a cleaning assembly (43) including a cleaning assembly housing (40) and a driven cleaning roller (60,65). The robot maintenance station (100,1100,1200,1300,1400) includes a station housing (120) and a docking platform (122) configured to support the robot (10) when docked. A mechanical agitator (510,520) engages the roller (60,65) of the robot (10) with the robot (10) docked. The agitator (510,520) includes an agitator comb (511) having multiple teeth (512) configured to remove accumulated debris from the roller (60,65) as the agitator comb (511) and roller (60,65) are moved relative to one another. The robot maintenance station (100,1100,1200,1300,1400) includes a collection bin (150) arranged to receive and hold debris removed by the mechanical agitator (510,520).