Abstract:
A control device for a double-deck elevator system having an upper deck and a lower deck, includes a group control device for assigning the upper and lower decks to respond to car calls from the upper and lower decks and boarding hall calls from a plurality of floors. The control device further includes an assignment control device for determining whether a plurality of the car calls and boarding hall calls can be responded to simultaneously and for directing said group control device to reassign the upper and lower decks to respond to the plurality of car calls and boarding hall calls simultaneously.
Abstract:
An elevator system having cars in service at top and bottom in a single shaft with efficient group control. The elevator system is provided with a shaft assignment finalizing unit for selecting a shaft and a car to be assigned to a new call, and a reassigning unit for reassigning a car as necessary when a new call occurs after assignment is performed. After tentative assignment is finalized, if a new call is generated before a time for finalizing a stop of a tentatively assigned car is reached, then the tentative assignment is reviewed. If it is determined that reassigning of cars is necessary for a call, then the reassigning unit changes car assignment to the call. Assignment of a car is finalized by the car assignment finalizing unit, and information regarding a final decision is displayed by a display controller.
Abstract:
A method schedules elevator cars in a group elevator system in a building by first generating a set of probability distributions for arrivals of future passengers at any floor of the building, wherein the set of probability distributions are characterized by probabilistic variables that specify arrival information of the future passengers, wherein the arrival information includes a probability of service requests by the future passengers and a probability of possible times of the service requests. A schedule for the elevator cars is based on the set of probabilistic distribution. Then, the schedule is provided to a controller of the group elevator system to move the elevator cars according to the schedule.
Abstract:
An elevator group control apparatus includes a parameter calculating unit for determining a weighting factor for an item to be evaluated, which is calculated from a running distance estimated by an estimation arithmetic operation unit by taking into consideration a relation between a running distance of an elevator and a passenger average waiting time, and an evaluation arithmetic operation unit for calculating a total evaluated value from an item to be evaluated of a passenger waiting time, an item to be evaluated of the running distance, and the weighting factor determined by the parameter calculating unit. The elevator group control apparatus selects an elevator whose total evaluated value is the best from among the plurality of elevators, and assigns a hall call to the selected elevator.
Abstract:
In a control device for double-deck elevator systems equipped with a plurality of elevators that have an upper deck and a lower deck that are conveyed simultaneously to two adjacent floors and that assign elevator decks to respond to boarding hall calls from each floor, to select the optimal deck for responding to boarding hall calls is selected from among all of the aforementioned decks to make elevator travel and passenger transport more efficient. A response suitability index is found from various elements-predicted response time to a boarding hall call by a deck, the likelihood ratio of said predicted response time, the effect on existing boarding hall calls by responding to the boarding hall call, the car space available for the deck, and the number of elevators resulting from response to the boarding hall calls Processing to find this response suitability index is performed for all the decks of multiple elevators, the deck that has the optimal response suitability index is determined from among them and an assignment is made.
Abstract:
An aspect includes capturing crowd data associated with a lobby area of an elevator system. A dispatching schedule of one or more elevator cars of the elevator system is adjusted based on the crowd data. A notification of the adjustment to the dispatching schedule is output.
Abstract:
A method schedules elevator cars in a group elevator system in a building by first generating a set of probability distributions for arrivals of future passengers at any floor of the building, wherein the set of probability distributions are characterized by probabilistic variables that specify arrival information of the future passengers, wherein the arrival information includes a probability of service requests by the future passengers and a probability of possible times of the service requests. A schedule for the elevator cars is based on the set of probabilistic distribution. Then, the schedule is provided to a controller of the group elevator system to move the elevator cars according to the schedule.
Abstract:
An elevator group control apparatus includes a parameter calculating unit for determining a weighting factor for an item to be evaluated, which is calculated from a running distance estimated by an estimation arithmetic operation unit by taking into consideration a relation between a running distance of an elevator and a passenger average waiting time, and an evaluation arithmetic operation unit for calculating a total evaluated value from an item to be evaluated of a passenger waiting time, an item to be evaluated of the running distance, and the weighting factor determined by the parameter calculating unit. The elevator group control apparatus selects an elevator whose total evaluated value is the best from among the plurality of elevators, and assigns a hall call to the selected elevator.
Abstract:
An elevator system controller for efficient group supervisory control while avoiding collisions between two elevator cars in service in a single elevator shaft. The elevator system controller includes a risk calculating unit for calculating a risk of a collision between elevator cars in the same shaft when the elevator cars are responding to a new call for service, a car assigning unit for assignment of an elevator car to respond to the new call based on the risk of collision, and an operation control unit for controlling operation of the elevator cars based on the assignment by the car assigning unit. The risk of collision is calculated for each car, and the risk is recalculated based on a possibility of a withdrawal of one of the elevator cars to a position in the shaft where no collision can occur, based on a predicted arrival time of a car at the floor requiring service. Cars that have high risks of collision when the remaining cars in the same shaft cannot be withdrawn in time to a safe spot are removed as candidates for assignment to respond to the new call. An evaluation is carried out using several evaluation indexes, in addition to the risk of collision, to decide which car is to be assigned to respond to the new call. If a determination of a traffic condition indicates low usage of the elevator cars, one car in each shaft is forwarded to a rest position and paused.