Abstract:
An apparatus including at least three deflectable members each configured to deflect during assembly with a component, and also configured to remain in contact with the component after assembly with the component. At least one of the deflectable members and the component has a thickness not greater than about 1000 microns.
Abstract:
The invention relates to an interconnection support for plate-like microcomponents (1) which comprises a support rail (2) fixed to a support plate (3). An insertion slot (4) of said support rail (2) receives a plug-in edge (5) of a plate-like microcomponent (1). Line-connecting elements (10, 10a) are provided for in at least one side wall (9) of the insertion slot (4) of the support rail (2) and can be connected with corresponding connecting elements (11) situated in an external side (1a) of the plate-like microcomponent (1).
Abstract:
A minute structure such as a cantilever 11 is formed on a silicon substrate 10 and heated by irradiating a laser beam to a part of the cantilever 11, by which the cantilever 11 is bent. The two bent cantilevers 11 are inserted into through holes 14 in a crystal substrate 10 formed in advance, and the tip end portions 15 thereof are heated. The heated tip end portions 15 become thicker and at the same time shorter, so that the crystal substrate 12 can be fixed to the silicon substrate 10 without play. By heating a part of the minute structure by such a method, plastic deformation is produced, so that bending and deforming can be performed. Thereby, a three-dimensional micromachined structure is constructed and assembled.
Abstract:
The invention provides droplet actuators with droplet operations surfaces for manipulating droplets, e.g., by conducting droplet operations. The droplet operations surfaces are typically exposed to a droplet operations gap. One or more regions of a droplet operation surface may include patterned topographic features. The invention also provides a droplet actuator in which one or both gap-facing droplet operations surfaces is formed using a removable film. The removable film may, in various embodiments, also include other components ordinarily associated with the droplet actuator substrate, such as the dielectric layer and the electrodes. Further, the invention provides droplet actuator devices and methods for coupling and/or sealing substrates of a droplet actuator, such as techniques for self-aligning assembly of droplet actuator substrates. The invention provides droplet actuators and methods of disassembling the droplet actuator in order to provide access for cleaning and/or recycling of droplet actuator surfaces.
Abstract:
The invention provides droplet actuators with droplet operations surfaces for manipulating droplets, e.g., by conducting droplet operations. The droplet operations surfaces are typically exposed to a droplet operations gap. One or more regions of a droplet operation surface may include patterned topographic features. The invention also provides a droplet actuator in which one or both gap-facing droplet operations surfaces is formed using a removable film. The removable film may, in various embodiments, also include other components ordinarily associated with the droplet actuator substrate, such as the dielectric layer and the electrodes. Further, the invention provides droplet actuator devices and methods for coupling and/or sealing substrates of a droplet actuator, such as techniques for self-aligning assembly of droplet actuator substrates. The invention provides droplet actuators and methods of disassembling the droplet actuator in order to provide access for cleaning and/or recycling of droplet actuator surfaces.
Abstract:
An apparatus including at least three deflectable members each configured to deflect during assembly with a component, and also configured to remain in contact with the component after assembly with the component. At least one of the deflectable members and the component has a thickness not greater than about 1000 microns.
Abstract:
The present invention provides microfluidic devices, systems and methods for using the same, which facilitate the introduction of fluid to and from a microfluidic channel located within the microfluidic devices.
Abstract:
A micromachined coupler for coupling a capillary having a first size to an orifice having a shape and a second size, has a body which has a shape conforming the shape of the cavity into which the body must fit. A through hole is defined through the body. The through hole has a size conforming to the first size of the capillary. The capillary is disposable into the through hole so that the capillary is communicated to the orifice without the first and second sizes necessarily being the same. The cavity and the body have conforming slanting surfaces, and in particular the cavity and the body define truncated pyramidal shapes. The cavity and the body each have a truncated pyramidal shape. The pyramidal shape may be square, triangular, or conical. A method of fabricating the micromachined coupler is achieved either by micromaching or micromolding.
Abstract:
In one embodiment, the present invention is directed to a method of fabricating a micro-mechanical latching device, comprising: depositing a structural layer in a fabrication plane, wherein the first structural layer possesses a topography; depositing a sacrificial layer adjacent to the first layer such that the sacrificial layer conforms to the topography of the first layer; depositing a second structural layer that conforms to the topography of the first layer; removing the sacrificial layer; and using at least the first structural layer and second structural layer to fabricate the micro-mechanical latching device.
Abstract:
A micromachined coupler for coupling a capillary having a first size to an orifice having a shape and a second size, has a body which has a shape conforming the shape of the cavity into which the body must fit. A through hole is defined through the body. The through hole has a size conforming to the first size of the capillary. The capillary is disposable into the through hole so that the capillary is communicated to the orifice without the first and second sizes necessarily being the same. The cavity and the body have conforming slanting surfaces, and in particular the cavity and the body define truncated pyramidal shapes. The cavity and the body each have a truncated pyramidal shape. The pyramidal shape may be square, triangular, or conical. A method of fabricating the micromachined coupler is achieved either by micromaching or micromolding.