Abstract:
Provided is a method for manufacturing a concrete pump cleaning foam. The method comprises: providing a mixture of a polymer containing an olefin block copolymer (OBC) having a DSC melting point of 100° C. or higher and a natural or synthetic rubber, a liquid softening agent, and one or more additives selected from the group consisting of a crosslinking agent, a foaming agent, a metal oxide, stearic acid, an antioxidant, zinc stearate, titanium dioxide, a crosslinking coagent, and a pigment; placing the mixture in a mold and pressurizing the mixture at elevated temperature to form a polymer foam; and after the foaming, polishing the surface of the polymer foam to separate closed cells into a surface.
Abstract:
Provided is a phenol resin foam that has low initial thermal conductivity and that retains low thermal conductivity for a long period of time. The present phenol resin foam may contain a cyclopentane and a high-boiling hydrocarbon with a boiling point of from 120° C. to 550° C. and may have a density of from 10 kg/m3 to 150 kg/m3. The content of the cyclopentane in the phenol resin foam per 22.4×10−3 m3 space volume in the phenol resin foam is from 0.25 mol to 0.85 mol.
Abstract:
A polyolefin material that is formed by solid state drawing of a thermoplastic composition containing a continuous phase that includes a polyolefin matrix polymer and nanoinclusion additive is provided. The nanoinclusion additive is dispersed within the continuous phase as discrete nano-scale phase domains. When drawn, the nano-scale phase domains are able to interact with the matrix in a unique manner to create a network of nanopores.
Abstract:
A polyurethane foam having an initial UL 94 vertical flame classification of V-0 and maintaining a UL 94 vertical flame classification of V-0 after one week of heat aging at 150° C. is formed as the reaction product of an isocyanate component and an isocyanate-reactive component in the presence of a blowing agent. The isocyanate component includes an isocyanate-containing compound and a non-reactive phosphorous compound that is present in an amount ranging from 1 to 20 weight percent based on the total weight of the polyurethane foam. The isocyanate-reactive component includes a polyether polyol and expandable graphite that is present in an amount ranging from 3 to 30 weight percent based on the total weight of the polyurethane foam.
Abstract:
A method for producing carbon or graphite foam parts with high purity level for high-temperature insulation under vacuum or protective gas, as insulating material or as filter material, includes the following steps: introducing dry, foamable starch (1) into an open-top container (2) having a round or angular cross section, until the base (3) of the container (2) is covered amply and uniformly with starch (1); introducing the container (2) partly filled with starch (1) into an oven (4), and heating the container (2) to a foaming temperature of >180° C. over a prolonged period of several hours to foam the starch (1), until the container (2) has filled completely with carbon foam (6); withdrawing the container (2) from the oven (4) and extracting the carbon foam (6) after sufficient cooling, and optionally portioning the carbon foam (6) into carbon foam parts (6.1).
Abstract:
Provided are a dielectric material and a method for manufacturing the same. The dielectric material includes: subjecting a foamed sphere obtained by a primary foaming to a second foaming in a second moulding chamber filled with CO2 at a second temperature in the range of 20° C. below Tm to 5° C. below Tm and under a second pressure of 15-20 MPa for 30-3600 min to obtain the dielectric material, wherein the primary foaming comprises specific steps of: foaming a foaming material sphere with a diameter of 20-800 mm in a first moulding chamber filled with CO2 at a first temperature in the range of 80° C. below Tm to 20° C. below Tm and under a first pressure of 15-20 MPa to obtain the foamed sphere. Further provided is a dielectric material manufactured by the method above.
Abstract:
Storage-stable two-component polyurethane or polyisocyanurate spray foam compositions are disclosed, said compositions comprising: (a) an A-side component comprising one or more polyisocyanate and one or more blowing agent; and (b) a B-side component comprising one or more polyol and one or more blowing agent comprising pressurized gaseous carbon dioxide and one or more liquid blowing agent; wherein both the A-side component and the B-side component, separately, generate less than 300 ppm of fluoride ion after one week of aging at 50° C.
Abstract:
An absorbent article containing a polyolefin film is provided. The polyolefin film is formed by a thermoplastic composition containing a continuous phase that includes a polyolefin matrix polymer and nanoinclusion additive is provided. The nanoinclusion additive is dispersed within the continuous phase as discrete nano-scale phase domains. When drawn, the nano-scale phase domains are able to interact with the matrix in a unique manner to create a network of nanopores.
Abstract:
A molded body contains foamed pellets, containing a composition (M1) containing a thermoplastic elastomer (TPE-1), having a ratio of average surface area to average volume of the pellets (A/V) determined according to method-example 1 and 2 in a range of from 1.4 to 3.0. A process for preparing the molded body involves providing the foamed pellets comprising the composition (M1), and fusing the foamed pellets to obtain the molded body. A molded body obtained or obtainable by the process is useful in furniture, seating, cushioning, car wheels or parts of car wheels, toys, animal toys, tires or parts of a tire, saddles, balls and sports equipment, sports mats, or as floor covering or wall paneling, especially for sports surfaces, track and field surfaces, sports halls, children's playgrounds, and pathways.
Abstract:
Storage-stable two-component polyurethane or polyisocyanurate spray foam compositions are disclosed, said compositions comprising: (a) an A-side component comprising one or more polyisocyanate and one or more catalyst; and (b) a B-side component comprising one or more polyol; and further comprising one or more hydrohaloolefin blowing agent in either the A-side component or the B-side component, or in both; wherein both the A-side component and the B-side component, separately, generate less than 600 ppm of fluoride ion after two weeks of aging at 50° C.