Abstract:
A procedure for removing a water-insoluble finish from aramide fibers, wherein the aramide fibers are present as short-cut, random fibers or flat textile materials and are treated with an agent that contains at least one hydrophilic fluid.
Abstract:
There are disclosed graft polyesters useful as adhesives and coatings and especially useful in processes for sizing spun and continuous filament synthetic organic and inorganic fibrous yarn. One embodiment of the invention is a textile size composition having free carboxyl groups which is prepared in situ on a textile yarn by the application of heat or radiation to a mixture of an unsaturated polyester reactant and a monovinyl monomer reactant comprising an acidic monovinyl monomer having at least one carboxyl group or mixtures thereof with any monovinyl monomer. Desizing can be accomplished by partial neutralization of the size to a pH of at least 6 by reacting the size with a base to render the graft polyester water-dispersible or water-soluble.The graft polyester compositions of the invention are especially useful as size compositions since they can be applied to the yarn from a solventless mixture and require only at least one of the application of heat or irradiation to graft polymerize the size in situ on the yarn. The graft polyester of the invention comprises the reaction product of (1) an unsaturated polyester which is the reaction product of at least one polycarboxylic acid reactant, preferably a dicarboxylic acid reactant and at least one polyhydric alcohol reactant, preferably a diol, wherein a minor effective proportion of at least one of said reactants is .alpha.,.beta.-ethylenically unsaturated with (2) at least one monovinyl monomer reactant comprising at least one acidic monovinyl monomer containing at least one carboxyl group or a mixture of said vinyl monomer with any monovinyl monomer.Alternatively, where water-insolubility is desired in the graft polyester under both acid and basic conditions, a polyunsaturated vinyl monomer is utilized having two or more vinyl groups per molecule. The graft polyesters of the invention prepared using monovinyl monomers also can be reacted with cross-linking resins, such as aminoplast resins, to confer water-insolubility under both basic and acid conditions.
Abstract:
Process for colouring textile materials which comprises treating the textile material with a stable deflocculated dispersion of a dyestuff in an organic liquid and subsequently removing the organic liquid, the textile material being heated simultaneously with or subsequent to the treatment with the said dispersion.
Abstract:
PROBLEM TO BE SOLVED: To provide a method of removing a sizing agent that accomplishes continuous removing of sizing agent within a short period of time while suppressing any damage on fiber bundle (yarn) and ensures easy realization by simple construction, thereby excelling in practical utility. SOLUTION: The method of removing a sizing agent is one for removal of sizing agent adhering to yarn 1 obtained by collecting multiple fiber filaments, or a fiber body obtained by weaving weft and warp yarns resulting from collection of multiple fiber filaments, or a fiber body obtained by unidirectional draw arrangement of yarns resulting from collection of multiple fiber filaments, comprising allowing continuous passage of the yarn 1 or fiber body through solvent 2 capable of dissolving the sizing agent under generation of bubbles 3 so as to attain removal of the sizing agent from the yarn 1 or fiber body. COPYRIGHT: (C)2009,JPO&INPIT
Abstract:
A process for removing water insoluble aramide fiber finish as short section, irregular or flat textile fibers and treatment with an agent containing at least one hydrophilic fluid is new.
Abstract:
Compositions and textile sizes based on those compositions, which are particular poly(vinyl alcohol) copolymer ionomers, as well as blends of those ionomers with other sizing polymers are described. A process to prepare the ionomers is described. The compositions are poly(vinyl alcohol) copolymers which have carboxylic acid ionomer comonomer units. Sizes based on these ionomers are aqueous solutions of the ionomers or solutions of blends of them with other poly(vinyl alcohol) polymers which are not ionomeric, or solution/suspensions of the ionomers with various starches, or both. Desizing in either water or caustic solutions is generally far superior to comparable polymer blends which contain no poly(vinyl alcohol) copolymer ionomer.
Abstract:
A hot-melt warp yarn size composition (13) and a method for applying, desizing, and disposing of it which essentially eliminates atmospheric and water pollution at all stages of the process. The size (13) is a melt blend of ethylene/vinyl acetate copolymer with microcrystalline, paraffin, or hydrogenated tallow wax. It is applied (12) as a melt to warp yarn (10), desized (15) with hot petroleum solvent, and the extracted size and unrecovered solvent burned (17) to non-polluting carbon dioxide and water.
Abstract:
A process for producing woven or knitted fabrics having an improved fastness, high qualities, and the width as large as 150 cm from yarn-dyed raw silk while evading possible occurrence of defects caused by piece dyeing, such as shading, friction marks, creases or bending. The process comprises the step (3) of union dyeing of sericin which surrounds the silk and fibroin which is contained within the silk, the steps (4 and 5) of preparing yarn-dyed raw silk by doubling the dyed silk fibers followed by twisting, the step (6) of producing fabric by weaving or knitting the yarn-dyed raw silk, the step (7) of swelling the raw silk constituting the fabric in a hot-water bath, and the step (8) of enzymatic degumming by treating the fabric with an enzyme capable of hydrolyzing the sericin of the swollen yarn-dyed raw silk.
Abstract:
A process for producing woven or knitted fabrics having an improved fastness, high qualities, and the width as large as 150 cm from yarn-dyed raw silk while evading possible occurrence of defects caused by piece dyeing, such as shading, friction marks, creases or bending. The process comprises the step (3) of union dyeing of sericin which surrounds the silk and fibroin which is contained within the silk, the steps (4 and 5) of preparing yarn-dyed raw silk by doubling the dyed silk fibers followed by twisting, the step (6) of producing fabric by weaving or knitting the yarn-dyed raw silk, the step (7) of swelling the raw silk constituting the fabric in a hot-water bath, and the step (8) of enzymatic degumming by treating the fabric with an enzyme capable of hydrolyzing the sericin of the swollen yarn-dyed raw silk.