Abstract:
The invention concerns a turbine driving a power conversion means, the power conversion means comprising several power conversion units, preferably of approximately similar power conversion capacity, that have coupling means for coupling the power conversion units to the turbine, the turbine having measuring means for determining the rotation speed of the turbine and/or a flow speed of the turbine driving flow of wind or water and a control system for controlling the coupling means in dependence of the determined rotation speed and/or flow speed. In accordance with the invention the control system has means for activating and deactivating the coupling means for the different the power conversion units so that the power conversion units are used equally.
Abstract:
A piston machine, in particular a fluid piston machine, is described as having a plurality of piston units, which have differently sized output volumes for reasons of geometry, and are able to be deactivated individually for the discrete adjustment of a total output volume of the piston machine. In this context, the larger output volume of one of the piston units is twice as high as the next smaller output volume of one of the other piston units.
Abstract:
A pump which can operate in a number of different modes, wherein each mode corresponds to a different output of the pump. The pump may have a plurality of pump chambers located within a pump housing. The pump chambers may be arranged in fluid communication with an inlet port and an outlet port. Each pump chamber may have a pumping device which draws in fluid from the inlet port during an intake stroke and pushes fluid through the outlet port during a discharge stroke. The pump may also have a plurality of electronically controlled valve assemblies which control the output of the pump. Each valve assembly can be selectively switched to a by-pass state for by-passing the fluid flowing from the pump chamber back to the inlet port during the discharge stroke of a pumping device. The pump may operate in a number of different modes which each have a distinct output. Each mode may be defined by which valves are chosen to be switched to their by-pass state.
Abstract:
A fluid-working machine has a plurality of working chambers, e.g., cylinders, of cyclically changing volume, a high-pressure fluid manifold and a low-pressure fluid manifold, at least one valve linking each working chamber to each manifold, and electronic sequencing means for operating said valves in timed relationship with the changing volume of each chamber, wherein the electronic sequencing means is arranged to operate the valves of each chamber in one of an idling mode, a partial mode in which only part of the usable volume of the chamber is used, and a full mode in which all of the usable volume of the chamber is used, and the electronic sequencing means is arranged to select the mode of each chamber on successive cycles so as to infinitely vary the time averaged effective flow rate of fluid through the machine.
Abstract:
The invention concerns a turbine driving a power conversion means, the power conversion means comprising several power conversion units, preferably of approximately similar power conversion capacity, that have coupling means for coupling the power conversion units to the turbine, the turbine having measuring means for determining the rotation speed of the turbine and/or a flow speed of the turbine driving flow of wind or water and a control system for controlling the coupling means in dependence of the determined rotation speed and/or flow speed. In accordance with the invention the control system has means for activating and deactivating the coupling means for the different the power conversion units so that the power conversion units are used equally.
Abstract:
A fluid-working machine has a plurality of working chambers, e.g. cylinders (11), of cyclically changing volume, a high-pressure fluid manifold (14) and a low-pressure fluid manifold (16), at least one valve (13, 15) linking each working chamber to each manifold, and electronic sequencing means (20) for operating said valves in timed relationship with the changing volume of each chamber (11), wherein the electronic sequencing means is arranged to operate the valves of each chamber in one of an idling mode, a partial mode in which only part of the usable volume of the chamber is used, and a full mode in which all of the usable volume of the chamber (11) is used, and the electronic sequencing means (20) is arranged to select the mode of each chamber on successive cycles so as to infinitely vary the time averaged effective flow rate of fluid through the machine.
Abstract:
A control for a pressure fluid supply system is described, in particular for the high pressure in a fuel injection system, for example for an internal combustion Diesel engine, by means of which the pressure in a common high-pressure line supplied by a high-pressure pump, i.e. in the common rail, to which individual consumers are connected, is controlled in accordance with the instantaneous pressure fluid requirements. For adapting the pressure in the common high-pressure line to the pressure fluid requirements of the consumers, i.e. the injection nozzles, a device for limiting the amounts of fluids conveyed is associated with the high-pressure pump, which has at least on adjusting element which can be changed by means of an adjusting signal representing the instantaneous pressure fluid supply situation in the common rail. To avoid an elaborate pressure sensor device in the common rail and for the simultaneous improvement of the reaction behavior of the control, in particular when reducing the high pressure in the common rail, the adjusting signal is derived from the amount of fluid throughput in the delivery line of a pressure control valve connected to the common rail. The pre-conveying pressure or the pre-conveying amount available to the high-pressure pump is affected by means of this adjusting signal in the sense of a regulation of the pressure in the common rail.
Abstract:
A compressor having plural banks of cylinders can be operated multi-stage, single stage, plural parallel single stages and, when multi-stage, with or without an economizer. One of the low stage banks of cylinders can be unloaded to reduce the first stage output during multi-stage operation or to permit operation of a single stage when the second stage is bypassed.
Abstract:
A compressor (22) has: a case (32) defining: a first cylinder bank (70) having a plurality of cylinders (76, 77); a cylinder head (100); a suction port (26); a discharge port (28); and an economizer port (30); a plurality of pistons, each individually associated with a respective one of the cylinders; and a crankshaft (202) held by the case for rotation about a crankshaft axis and coupled to the pistons. The first bank cylinder head is divided into: a first suction chamber (130); a second suction chamber (132); and a single discharge chamber (128). The second cylinder bank cylinder head is divided into: a single suction chamber (120); and a single discharge chamber (124). The first cylinder bank first suction chamber is coupled to the suction port. The first cylinder bank second suction chamber is coupled to the economizer port. The first cylinder bank discharge chamber is coupled to the discharge port.