Abstract:
A magnesium alloy member capable of achieving a mechanical strength and a high-temperature fatigue strength sufficient for a compressor for in automotive air conditioners The magnesium alloy member is formed by subjecting a cast material of a magnesium alloy containing, on the basis of mass %, from 0.3% to 10% calcium (Ca), from 0.2% to 15% aluminum (Al), and from 0.05% to 1.5% manganese (Mn), and containing calcium (Ca) and aluminum (Al) at a calcium/aluminum mass ratio of from 0.6 to 1.7, with the balance being magnesium (Mg) and inevitable impurities to plastic working (extrusion processing) at from 250° C. to 500° C. This makes it possible to obtain a magnesium alloy member having a room-temperature 0.2% proof stress of 300 MPa or more and a 150° C. fatigue strength of 100 MPa or greater.
Abstract:
An aqueous phosphoric bonding solution consists essentially of phosphoric acid, a source of magnesium ions, and a leachable corrosion inhibitor. The bonding solution is stable with respect to inorganic metal particles, such as aluminum, which are admixed to the bonding solution for the preparation of a coating slurry. Metal parts coated with the coating compositions have very satisfactory properties such as heat and corrosion resistance.
Abstract:
The invention features a magnesium alloy engine block. Preferably, the magnesium alloy engine block includes a crankcase formed of magnesium alloy and having a plurality of cylinder chambers, a cylindrical liner fitted into the cylinder chambers, and an integral insert embedded into the crankcase between and below the cylinder chambers and having a crankshaft support part, extension parts which upwardly extend from the crankshaft support part toward the cylinder chambers, and upper coupling parts, the crankshaft support part, the extension parts and the upper coupling parts being integrally formed with one another.
Abstract:
A compact and lightweight electric generator for portable power applications employs a new engine design and integration approach for reducing engine, generator, and starter weight. A unique flywheel alternator/starter configuration that generates electrical power, rotates the engine for starting, provides inertia for smooth engine operation, pressurized air for cooling, and inertia for the alternator. An engine cowling provides rotating component protection, a fan shroud mechanism, cooling air ducts, and a cooling mechanism for handling large quantities of heat produced by rectified power conversion. An electrical hook up that allows the generator to provide transient surge capacity for starting inductive loads, or improved load leveling and fuel efficiency.
Abstract:
A magnesium alloy consisting essentially of 10 to 15% by weight of Al, 0.5 to 10% by weight of Sn, 0.1 to 3% by weight of Y, and 0.1 to 1% by weight of Mn, the balance being Mg and inevitable impurities.
Abstract:
A porous composite forming material is held in a cavity of a casting mold, and molten light alloy is poured into the cavity of the casting mold through a gate. Then a gas pressure is applied to the cavity in the casting mold with the cavity closed, thereby impregnating the pores of the porous composite forming material with the molten light alloy and forming a composite portion formed of a composite material of the light alloy and the composite forming material.
Abstract:
Light alloy articles comprising a body of light alloy having a composite layer of heat-resistant fibers and light alloy and bonded to said body, and a surface layer of heat-resisting alloy sprayed onto said composite layer exhibit improved integrity and heat resistance when the heat-resisting alloy is plasma sprayed onto one surface of a preform of fibers and the light alloy is then cast to the opposite surface of the preform such that an interfacial layer is defined between the composite layer and the surface layer in which the fibers and light alloy are integrally incorporated with the heat-resisting alloy.
Abstract:
The present invention relates to an aluminum alloy having low density and enhanced heat resistance. An aluminum alloy having improved high temperature physical properties comprises: magnesium (Mg) in an amount of about 7 to about 11 wt %, silicon (Si) in an amount of about 4 to about 8 wt %, copper (Cu) in an amount of about 0.5 to about 2 wt % and manganese (Mn) in an amount of about 0.3 to about 0.7 wt %, and a balance of aluminum based on the total weight of the aluminum alloy. Vehicle parts such as a piston, a housing and/or a bed plate of high power engine, to which the aluminum alloy may be applied, are provided as well.