Abstract:
A motion sensor includes: a substrate, which includes a plurality of lead frame layers and a plurality of ceramic layers; a light source, disposed on the substrate, for emitting light; a sensing device, disposed on the substrate, for receiving the light to perform motion sensing; a cover, for fixing and protecting the light source and the sensing device; and an adhesive, for gluing the cover to the substrate, the adhesive including a component capable of blocking the light; wherein the light is infrared light, visible light or ultraviolet light.
Abstract:
A motion sensing device for sensing infrared rays includes a substrate; an optical module, including a first spacer layer, coupled to the substrate; a first glass layer, formed on the first spacer layer; a second spacer layer, formed on the first glass layer; a second glass layer, formed on the second spacer layer; a third spacer layer, formed on the second glass layer; a first lens, bonding on a first side of the second glass layer; and a second layer, bonding on a second side relative to the first side of the second glass layer; and a coating layer, covered on the optical layer for shielding the infrared rays, wherein the coating layer does not cover the first lens.
Abstract:
A method of interrupt control for a control unit of an electronic system includes receiving digital data; determining a value of the digital data; and sending interrupt signals to a host by the following methods according to the value: when the control unit is in a second signal sending status and after the value of the digital data increases to be greater than a first threshold and remains greater than the first threshold for a first period of time, switching the control unit to a first signal sending status; and when the control unit is in the first signal sending status and after the value of the digital data decreases to be smaller than a second threshold and remains smaller than the second threshold for a second period of time, switching the control unit to the second signal sending status. The second threshold is smaller than the first threshold.
Abstract:
A method and apparatus for sensing the wavelength of a laser beam using an optogalvano effect by atoms or molecules in plasma. Atoms or molecules in the plasma are irradiated with the laser beam. The impedance of the plasma at that time is sensed to sense whether the wavelength of the laser beam coincides with a predetermined absolute wavelength. The sensed result is used to control the wavelength of the laser beam.
Abstract:
A method of interrupt control for an electronic system, the electronic system including a host and an electronic device, includes receiving digital data generated by the electronic device; determining a value of the digital data and dividing a possible range of the value of the digital data into a plurality of regions; and sending an interrupt signal to the host when the value of the digital data changes from a first region among the plurality of regions to a second region among the plurality of regions and remains within the second region for a specific period of time.
Abstract:
A light sensing module used in a light sensing system incorporated with a processor includes at least one first light source, for emitting light; at least one first light sensor, for sensing the light emitted by the first light source, light reflected by an ambient object or ambient light, in order to obtain a sensing result; a control unit, for performing image detecting and object identification or ambient light sensing by computing according to the sensing result, and generating a computational result; and at least one interrupt driver, for sending an interrupt signal to the processor, in order to notify the processor to receive the computational result; wherein the processor disposes a type and a number of the first light sensor, and configures the control unit accordingly, so that the control unit performs computation on the sensing result to generate the computational result.
Abstract:
A motion sensing device for sensing infrared rays includes a substrate; an optical module, including a first spacer layer, coupled to the substrate; a first glass layer, formed on the first spacer layer; a second spacer layer, formed on the first glass layer; a second glass layer, formed on the second spacer layer; a third spacer layer, formed on the second glass layer; a first lens, bonding on a first side of the second glass layer; and a second layer, bonding on a second side relative to the first side of the second glass layer; and a coating layer, covered on the optical layer for shielding the infrared rays, wherein the coating layer does not cover the first lens.
Abstract:
To create a broad band spectrometer, a plurality of individual antenna based bolometers are fabricated on the surface of a single spectrometer chip, each bolometer having an individual antenna which is sized differently from all others, thus being responsive to a generally unique frequency of radiation. Each antenna is coupled to a related transistor, which is easily formed using CMOS technology. The antennas are connected to opposite sides of a transistor gate, thus creating a termination resistor for the particular antenna. Multiple outputs from the various antennas are then coupled, thus providing responsiveness to electromagnetic radiation of a very broad spectrum.
Abstract:
A wavelength-conversion system includes a wavelength-conversion target that radiates an energy output when an energy input of a different wavelength is incident upon the wavelength-conversion target. An input structure directs the energy input of the input-energy wavelength to be incident upon the wavelength-conversion target. A target baseline temperature modifier either controllably heats or controllably cools the wavelength-conversion target independently of any heating or cooling effect of the energy input or the energy output. A detector is positioned so that the energy output of the output-energy wavelength emitted from the wavelength-conversion target is incident upon the detector.
Abstract:
The invention provides a method for measuring light scattered on a sample in a medium, in particular a fluid medium, that comprises the following steps: providing a rotatably arranged measuring cell with a substantially circular cross-section in a plane perpendicular to the axis of rotation for receiving the medium and the sample, rotating the measuring cell, preferably at least once by substantially 360°, about the axis of rotation, in particular by means of a drive, emitting a laser beam by means of a laser onto the sample located within the measuring cell in the plane perpendicular to the axis of rotation at different angles of rotation of the measuring cell, the measuring cell maintaining its position in the direction of the axis of rotation, detecting scattered light signals by means of at least two detectors arranged in a circle and concentrically to the center of rotation of the measuring cell and fixed within set, different angular ranges at different angles of rotation of the measuring cell, and determining a corrected signal value for each detector on the basis of the scattered light signals detected at different angles of rotation of the measuring cell for each detector. Furthermore, the invention provides an apparatus for measuring light scattered on a sample according to the method comprising a laser, a measuring cell and a detector.