Abstract:
Radiated light with a specified wavelength from a material (21, P, 201) is detected and a first parameter corresponding to the emissivity ratio is obtained from the detection signal. Since the emissivity takes on different values according to the condition of the surface of the material, the first parameter changes depending on the surface condition of the material. There is a correlation between a physical value indicating a condition of the material surface and the first parameter. The correlation remains equivalent even if a second parameter corresponding to the physical value is used instead of the physical value itself (for example, an optical physical value such as reflectivity and absorptivity, the thickness of a film formed on the material surface, the surface roughness, and the degree of galvannealing). As an example of the parameter corresponding to the physical value, there is the logarithmic ratio between emissivities (ln ε a /ln ε b ) corresponding to the temperature in the vicinity of the surface. Therefore, a second parameter can be obtained on the basis of the correlation and a physical value can be obtained. When the emissivity or logarithmic emissivity ratio is used as the second parameter, the temperature in the vicinity of the material surface can be obtained from the second parameter and the detection signal.
Abstract:
A method for measuring temperature based on infrared light which measures the temperature of a semiconductor element, the surface layer of which is formed with two kinds of materials having different emissivities and optical reflectances, based on the amount of infrared emission incident on an image taking means according to the invention, comprises the steps of taking an image by diffusing and letting the incident be the reflected light of a beam of light incident on the surface of the above semiconductor element on the light receiving face of the image taking means, followed by determining the area ratio at which each of the above two kinds of materials occupies the surface of the above semiconductor element by comparing the average brightness value of the above image with the brightness value of an image for the case that each of the above two kinds of materials independently forms the surface layer of the above semiconductor element, and obtaining the weighted average of the emissivities of the above two kinds of materials with the area ratio at which each of the above two kinds of materials occupies the surface of the above semiconductor element, followed by calculating the temperature of the above semiconductor element based on the weighted average and the actual amount of infrared emission.
Abstract:
A method for estimating the temperature of a steel product including a calibration step wherein the intensities at 5 wavelengths ranging from 0.9 to 2.1 μm are recorded for several measurement condition and spectral attenuation coefficients are computed, a measurement step wherein the intensities at said 5 wavelengths are recorded and spectral attenuation coefficients are computed for several temperatures and a comparison step wherein a probability test is performed to estimate the steel product temperature.
Abstract:
A computer-eimplemented method and thermal imaging device includes a layer of plasmonic material and a processor. The layer of plasmonic material receive electromagnetic radiation from an object and generates radiance measurements of the electromagnetic radiation at a plurality of wavelengths. The processor determines an emissivity and temperature of the object from the radiance measurements and forms a thermal-based electronic image of the object from the determined emissivity and temperature.
Abstract:
Devices and corresponding methods can be provided to measure temperature and/or emissivity of a target. Emissivity of the target need not be known or assumed, and any temperature difference between a sensor and the target need not be zeroed or minimized. No particular bandpass filter is required. Devices can include one or two sensors viewing the same target as the target views different respective viewed temperatures. The respective viewed temperatures can be sensor temperatures, and a single sensor can be set to each of the respective viewed temperatures at different times. An analyzer can determine the temperature and/or emissivity of the target based on the respective viewed temperatures and on plural net heat fluxes detected by the sensors and corresponding to the respective viewed temperatures.
Abstract:
Methods and apparatus are provided to determine the emissivity, temperature and area of an object. The methods and apparatus are designed such that the emissivity and area of the object may be separately determined as functions dependent upon the temperature of the object derived from a three or more band infrared measurement sensor. As such, the methods and apparatus may only require a regression analysis of the temperature of the object without any regression analysis of the emissivity and area of the object.
Abstract:
A pyrometer includes a light source capable of emitting light to at least two wavelengths to a target to be measured. A light measuring member measures the light source and provides output signals representative of those two wavelengths. A second light measuring member measures light reflected by the target and provides second signals corresponding to the two wavelengths. A third light measuring member measures the intensity of the light radiated by the target with respect to those two wavelengths to produce third signals. An emissivity is assumed for the target based on the predetermined wavelengths, and a temperature is calculated on the basis of the minimum value of the difference between the assumed radiation intensity calculated according to the assumed emissivity of the target and the measured radiation intensity in accordance with the third signals.
Abstract:
A non-contact infrared temperature sensing system for determining temperature values for a series of targets all having a similar emissivity value, which calculates an emissivity value for the targets based on the sensed total heat radiated from one target, an inputted temperature value for that target, and a temperature value for extraneous radiation from that target. The system then computes, for each subsequent target whose heat radiation is detected, a temperature value for each said target dependent upon the emitted component of radiation, and independent of the extraneous component of radiation from that target.
Abstract:
A multi-point non-invasive, real-time pyrometry-based temperature sensor (200) for simultaneously sensing semiconductor wafer (22) temperature and compensating for wafer emissivity effects. The pyrometer (200) measures the radiant energy that a heated semiconductor wafer (22) emits and coherent beams of light (224) that the semiconductor wafer (22) reflects. As a result, the sensor (200) generates accurate, high-resolution multi-point measurements of semiconductor wafer (22) temperature during a device fabrication process. The pyrometer (200) includes an infrared laser source (202) that directs coherent light beam (203) into beam splitter (204). From the beam splitter (204), the coherent light beam (203) is split into numerous incident coherent beams (210). Beams (210) travel via optical fiber bundles (218) to the surface of semiconductor wafer (22) within the fabrication reactor (80). Each optical fiber bundle (218) collects reflected coherent light beam and radiant energy from wafer (22). Reflected coherent light beam (226) and radiant energy (222) is directed to a detector (240) for detecting signals and recording radiance, emissivity, and temperature values. Multiple optical fiber bundles (218) may be used in the sensor (200) for high spatial resolution multi-point measurements of wafer (22) temperature for precision real-time process control and uniformity optimizations.
Abstract:
A method of and device for contactless measuring of temperature of an object independently of its emissivity in infrared and/or visible range, is based on finding, by means of Planck law of radiation a curve which is the sum of the radiance or radiant intensity of a radiator having temperature and emissivity of the object and the radiance or radiant intensity of a radiator having the temperature of environment, the latter radiation being reflected by the object with the reflectivity .rho.=1-.epsilon. where .epsilon. is the emissivity of the object. The actual temperature of the object is found from the curve which is most similar to the curve of at least two values of radiance or radiant intensity detected from the object, plotted against the wavelengths. The device for carrying out the method includes a spectrometer, a modulator rotating at constant speed and having at least two filtering segments for the radiation wavelengths, an analog/digital converter clocked by pulses derived from the modulator to produce at its output digital signals, a microprocessor for reiteratively processing the digital data according to the Planck law of radiation, and a display unit for reading out the computed emissivity, the temperature of the object and the temperature of the environment.