Abstract:
A mirror structure is provided in which at least a portion of a wavefront sensor is integrated with a mirror. In particular, a mirror structure is provided in which a Hartmann mask or a microlens array of a Shack-Hartmann wavefront sensor is integrated with a mirror to provide a very compact wavefront detector/corrector in a single device. Such a mirror structure may be used in a laser cavity to simplify adaptive optics in the cavity. Furthermore, a Hartmann Mask may be integrated with self deforming mirror comprising an active PZT layer bonded to a passive mirror substrate, wherein the Hartmann Mask comprises an array of apertures formed through the active PZT layer.
Abstract:
The present invention is intended to provide an adaptive optics system and an optical device that allow correction of wavefront phase aberration with higher accuracy than before and have a wider correction range than the conventional ones, regardless of the distance between the observation target and the fluctuation layer, and the size of the observation target. An adaptive optics system includes: a wavefront phase modulator that makes aberration correction to incident light and emits the corrected light; and an imaging-conjugated position adjustment mechanism that adjusts freely within a specimen the position of a surface imaging-conjugated with a fluctuation correction surface formed by the wavefront phase modulator. The imaging-conjugated position adjustment mechanism adjusts the fluctuation correction surface to be imaging-conjugated with a fluctuation layer existing in the specimen.
Abstract:
Aero-optical disturbance measurement-system including a mirror (32) supported by a gimbal (34) for receiving a light-beam and reflecting it to a first fold-mirror (36), then directly to a second fold-mirror (40), then to a first concave off-axis paraboloid mirror (46), then directly to another fold-mirror (48), then directly to a yet another fold-mirror (50), then directly to a second concave off-axis paraboloid mirror (52), then to a fast-steering mirror (54). The system further comprises a fine-tracking camera (41), coupled to an embedded processor (39), that receives a portion of the light-beam from the fast-steering mirror (54) wherein said embedded processor (39) controls the movement both of the fast-steering mirror (54) and of the gimbal (34).
Abstract:
Un analyseur de surface d'onde est modifié pour déterminer simplement des écarts de piston et de tilt qui peuvent exister entre des zones différentes d'une surface d'onde initiale (S 0 ). Pour cela, des interférences à deux ondes seulement sont produites à partir de faisceaux (F 1 , F 2 ) qui proviennent de zones voisines dans la surface d'onde initiale. Un tel analyseur peut être utilisé pour combiner de façon cohérente des rayonnements laser qui sont produits par des sources différentes agencées en parallèle. Une autre utilisation est la détermination d'écarts de hauteur et d'inclinaison qui sont présents entre des segments de miroir voisins d'un télescope de type Keck.
Abstract:
Aero-optical disturbance measurement-system including a mirror (32) supported by a gimbal (34) for receiving a light-beam and reflecting it to a first fold-mirror (36), then directly to a second fold-mirror (40), then to a first concave off-axis paraboloid mirror (46), then directly to another fold-mirror (48), then directly to a yet another fold-mirror (50), then directly to a second concave off-axis paraboloid mirror (52), then to a fast-steering mirror (54). The system further comprises a fine-tracking camera (41), coupled to an embedded processor (39), that receives a portion of the light-beam from the fast-steering mirror (54) wherein said embedded processor (39) controls the movement both of the fast-steering mirror (54) and of the gimbal (34).