Abstract:
A system and method to discriminate between a first preselected gas and at least one other preselected gas use of an absorption spectroscopy analyzer that includes a Herriott cell (10) and a temperature sensitive light source (14). The light source (14) operates at a temperature that emits a beam at a wavelength that corresponds to high absorption by a first preselected gas. When a predetermined level of this gas is detected in a gas sample, the analyzer changes the operating temperature of the light source to emit a beam at a wavelength that corresponds to high absorption by a second preselected gas. The second preselected gas can be a different isotope of the first preselected gas.
Abstract:
Vorrichtung zur optischen Detektion von Analyten in einer Probe, mit optoelektronischen Komponenten in Form von mehreren optischen Detektoren zum Empfang von Photonen und mehreren optischen Emittern zum Emittieren von Photonen, bei der mindestens drei Emitter in einer flächigen Anordnung, nicht auf einer Linie, vorgesehen sind, und mindestens drei Detektoren in einer flächigen Anordnung, nicht auf einer Linie, vorgesehen sind, und die Emitter und/oder die Detektoren mindestens drei unterschiedliche Wellenlängencharakteristika aufweisen.
Abstract:
The present invention provides an imaging system capable of reducing the generation of interference patterns in a state in which a beam of highly coherent electromagnetic waves is enlarged to a prescribed illumination area and used for illumination by moving the prescribed illumination region within a range of motion that is smaller than the illumination region.
Abstract:
Apparatus and method for optically measuring concentrations of components are disclosed, which allow enhancement in measurement accuracy of concentration. The apparatus comprises a cell (1), a light irradiator (2), a photodetector (3), and an arithmetic unit (4). The cell (1), which is formed of a transparent member into a triangular shape in its cross section, has different optical path lengths and is to contain a sample (11) therein. The light irradiator (2), which comprises a variable-wavelength laser generator (12), and a measuring system (15) composed of convex lenses (13), (14), makes a laser beam from the variable-wavelength laser generator (12) enlarged in cross-sectional area greater than original and formed into collimated light, and makes the laser beam incident upon the cell (1). The photodetector (3) comprises a multiplicity of CCDs (16) arranged in parallel to the surface of the cell (1), so that it can detect intensity of rays of transmitted light that have traveled over different optical path lengths at positions of an equal distance from the cell (1). The arithmetic unit (4), receiving a signal from the individual CCDs 16, calculates concentrations of components in the sample (11) based on optimum optical path lengths for different wavelengths and values of transmitted light at positions of the optimum optical path lengths, and further outputs calculation results.
Abstract:
Une chambre (10) d'échantillons gazeux utilisée dans un analyseur de gaz comprend un tube creux allongé (21) présentant une surface à réflexion spéculaire et orientée vers l'intérieur (22), qui permet au tube de fonctionner également comme un conduit léger permettant de conduire un rayonnement à partir d'une source (12) vers un détecteur (14) à travers l'échantillon gazeux. Un certain nombre d'ouvertures (24) dans la paroi du tube creux allongé permettent à l'échantillon gazeux d'entrer et de sortir. Des particules de fumée et de poussière supérieures à 0,1 micron sont maintenues hors de la chambre par l'intermédiaire d'une membrane semi-perméable (28) recouvrant les ouvertures du tube creux. On prévient la condensation des constituants du gaz en chauffant électriquement la chambre d'échantillon jusqu'à une température supérieure à la température au point de rosée du constituant en question. Selon un mode de réalisation, plusieurs détecteurs (40, 42, 44) sont espacés autour du pourtour du tube creux allongé, à proximité d'une de ses extrémités. Selon un autre mode de réalisation, plusieurs détecteurs sont espacés sur la longueur du tube.
Abstract:
An active heterodyne detection system comprises a continuously tuneable laser source (1) emitting infra-red radiation, means (8) to split the infra-red radiation into a first part and a second part,, means (4) to provide a frequency shift between the first part and the second part, means (8, 9) to direct the first part of the infra-red radiation to a target (2), means (4) to provide the second part of the infra-red radiation as a local oscillator, means (8, 9) to collect a scattered component of the first part of the infra-red light from the target (2), and means (5) to mix the scattered component and the local oscillator and route them to a detector (3) for heterodyne detection over a continuous spectral range. A method of active heterodyne detection over a continuous spectral range is also disclosed.
Abstract:
An active heterodyne detection system comprises a continuously tuneable laser source (1) emitting infra-red radiation, means (8) to split the infra-red radiation into a first part and a second part,, means (4) to provide a frequency shift between the first part and the second part, means (8, 9) to direct the first part of the infra-red radiation to a target (2), means (4) to provide the second part of the infra-red radiation as a local oscillator, means (8, 9) to collect a scattered component of the first part of the infra-red light from the target (2), and means (5) to mix the scattered component and the local oscillator and route them to a detector (3) for heterodyne detection over a continuous spectral range. A method of active heterodyne detection over a continuous spectral range is also disclosed.