Abstract:
An optical inspection system or tool can be configured to inspect objects using dynamic illumination where one or more characteristics of the illumination is/are adjusted to meet the inspection needs of different areas. For example, the illumination intensity may be increased or decreased as the tool inspects areas of memory and periphery features in a wafer die. In some embodiments, the adjustment can be based on data obtained during a pre-inspection setup sequence in which images taken based on illumination with varying characteristics are evaluated for suitability in the remainder of the inspection process.
Abstract:
An inspection system and method is provided herein for increasing the detection range of the inspection system. According to one embodiment, the inspection system may include a photodetector having a plurality of stages, which are adapted to convert light scattered from a specimen into an output signal, and a voltage divider network coupled for extending the detection range of the photodetector (and thus, the detection range of the inspection system) by saturating at least one of the stages. This forces the photodetector to operate in a non-linear manner. However, measurement inaccuracies are avoided by calibrating the photodetector output to remove any non-linear effects that may be created by intentionally saturating the at least one of the stages. In one example, a table of values may be generated during a calibration phase to convert the photodetector output into an actual amount of scattered light.
Abstract:
This application relates to method and apparatus for gas analysis. An apparatus (200) may have a first reflector (103) and a second reflector (104) positioned on either side of a sample volume (202) for a gas sample. The configuration of the first reflector may be variable between at least first (103a) and second (103) configurations, wherein each of the first and second configurations is arranged such that a beam of optical radiation from an optical beam origin (210) is directed to a detector location (212) via the sample volume. In the second configuration the beam of optical radiation is reflected at least once from each of the first and second reflectors and the path length of the beam of optical radiation through the sample volume is greater than in the first configuration.
Abstract:
Die Erfindung betrifft eine Messvorrichtung (10) und ein entsprechendes Messverfahren zur Messung einer Konzentration von gas- und/oder aerosolförmigen Komponenten eines Gasgemisches für einen Reaktionsträger (14) mit einem Strömungskanal (42), der eine Reaktionskammer (46) mit einem Reaktionsstoff (48) bildet, welcher ausgebildet ist, um mit zumindest einer zu messenden Komponente des Gasgemisches oder einem Reaktionsprodukt der zu messenden Komponente eine optisch detektierbare Reaktion einzugehen. Messvorrichtung (12) umfasst eine Detektionsbaugruppe (3) und eine Gasförderbaugruppe (2), wobei die Detektionsbaugruppe (3) eine Beleuchtungseinrichtung (37) zur Beleuchtung der Reaktionskammer (46) des Reaktionsträgers (14), einen optischen Sensor (38) zur Erfassung der optisch detektierbaren Reaktion, und eine Auswertungseinheit (4) zu Auswertung der vom optischen Sensor (38) erfassten Daten der optisch detektierbaren Reaktion und Bestimmung einer Konzentration der Komponente des Gasgemisches aufweist, und die Gasförderbaugruppe (2) eine Gasfördereinrichtung (28) zur Förderung des Gasgemisches durch den Gasabflusskanal (18) und eine Steuerungs-/Reglungseinheit (31) aufweist, welche ausgebildet ist, um einen Durchfluss des Gasgemischs durch den Strömungskanal (42) in Abhängigkeit zumindest eines Reaktionsgeschwindigkeitsparameters zu steuern oder zu regeln.