Abstract:
Technology is provided for an aqueous solution constituent analyzer (100). The analyzer (100) includes an ultraviolet light emitting diode LED (130) with a current source (146) providing variable current thereto. A spectrometer (132) is positioned for receiving light from the LED (130) transmitted through an aqueous solution. A controller (140) receives radiant flux data for a plurality of wavelengths and determines, based on the radiant flux data, a usable number of the plurality of wavelengths that satisfies a relative uncertainty threshold. The controller (140) can increase the current to the LED (130) if the usable number of wavelengths is less than a minimum threshold and calculate a concentration of a constituent of interest in the solution. The controller (140) can also determine a peak wavelength of the plurality of wavelengths having the greatest intensity value, and decrease the current level to the LED (130) if the peak wavelength has an intensity value greater than a saturation value for the spectrometer (132).
Abstract:
Controlled optical sensor device (10) including an optical emitter (21) generating an optical radiation (23), in particular in the visible or infrared field, and an optical receiver (22) to detect said optical radiation (23) upon interaction with a medium to be measured (24), a driving current (Ip) of said optical emitter (21) setting the intensity of said radiation (23) being controlled by driving means (50, 40) included in said optical sensor (10). According to the invention, said driving means (50, 40) include a microcontroller (50) configured to access calibration and/or compensation parameters and to adjust said driving current (Ip) as a function of said calibration and/or compensation parameters.
Abstract:
A light emitting apparatus has light emitting units. The light emitting units can be respectively provided with current densities, so that the light emitted by each of the light emitting unit has a light intensity, wherein the current densities are different from each other, or partial of the current densities are different from each other. A number of the light emitting units can be larger than or equal to four, all of the four lighting frequencies of the four light emitting units are different from each other, or partial of the four lighting frequencies of the four light emitting units are identical to each other, and the light emitting apparatus and the object under test rotate relative to each other. A light emitting method, a spectrum detection method and a lighting correction method are also illustrated for increasing SNR, correcting the light intensity or the spectrum signal.
Abstract:
An apparatus includes a pipe through which a multiphase fluid flows, with a transparent window structure formed in the pipe. A collimated light source emits light through the transparent window structure into the pipe having a wavelength at which a component of a desired phase of the multiphase fluid is absorptive. A photodetector is positioned such that the emitted light passes through the multiphase fluid in the pipe to impinge upon the photodetector. The photodetector has an actual dynamic range for collimated light detection. Processing circuitry is configured to continuously adjust a power of the collimated light source dependent upon an output level of the photodetector so as to cause measurement of the emitted light over an effective dynamic range greater than the actual dynamic range, and determine a property of the multiphase fluid as a function of the power of the collimated light source.
Abstract:
The present invention relates to a method for monitoring the filling of a capsule with a medicament, to a corresponding filling method, to the associated apparatuses, and to a computer program for controlling the method and the apparatus. In the monitoring method, after at least part of the capsule has been filled with a predefined filling mass of a predefined closed contour of the medicament, at least the filling mass in the part of the capsule after the filling operation is recorded using digital imaging in a first step, the contour of the filling mass in the part of the capsule is determined from the digital imaging recording in a second step, and the contour is analysed in a third step in order to assess the filling operation in comparison with the predefined contour. The invention provides for external influences on the image properties to be compensated for by controlling the optical system.
Abstract:
A gas detector (10) that is arranged to sense the concentration levels of target gases oxygen, methane, carbon monoxide, and hydrogen sulphide, within a gas sample from an environment surrounding the detector. The gas detector (10) comprises laser sources (12a-12d) that are arranged to transmit radiation through the gas sample at four target wavelengths that correspond approximately to the optimum absorption wavelengths of each of the target gases and an optical detector (16) that is arranged to sense the intensity of the radiation transmitted through the gas sample at each of the target wavelengths. A control system (22) generates representative concentration level information for the target gases based on the level of absorption of the radiation transmitted.
Abstract:
A plant sensor includes a light source section having first and second light emitters configured to irradiate the first and second measuring light toward the object to be measured, respectively, and a light receiver configured to receive reflected light from the object to be measured, and output light-receiving signals, a controller configured to control emission of the first and second light emitters at a different timing, an integrator configured to integrate the light-receiving signals, and output an integration signal, and a calculator configured to calculate, according to the integration signal, a reflection rate as a ratio of light volume of the reflected light of the first measuring light from the object to be measured to light volume of the first measuring light, a reflection rate as a ratio of light volume of the reflected light of the second measuring light from the object to be measured to light volume of the second measuring light, and obtains information regarding a growing condition of the object to be measured.
Abstract:
A method and apparatus relating to a controller for controlling a light emitting array by setting a power level provided to each individual light emission source within the light emitting array is provided. The controller includes a processor for executing instructions and a memory device for storing data. The data from the memory device provides individual instruction for a power level required for each individual light emission source to achieve a normalized detection of light within the fluorometer. A method of manufacturing a controller for controlling the emission of light in a fluorometer includes analyzing the well values of illumination and storing power level values in a memory device corresponding to predetermined illumination levels of the illumination sources.
Abstract:
A densitometer apparatus (410) is disclosed and is adapted to provide color density measurements of object samples. The densitometer apparatus (410) comprises a source light (580) for projecting light toward an object sample comprising a control strip (588, 620). A reflection optics assembly (576) is adapted to measure light density reflected from the object sample when the object sample is in the form of a paper control strip. A transmission optics assembly (618) is adapted to measure transmission density of light rays projected through the object sample when the object sample is in the form of a film control strip. A motor assembly (426) operating with a drive wheel assembly (434) and idler wheel assembly (440) automatically moves the object sample (588, 620) through the apparatus (410) adjacent the source light (580). A pair of guides (468, 470) are selectively adjustable by the operator to control movement of the object sample (588, 620) through the apparatus (410). In response to input from a key switch assembly (492) activatable by the operator, the apparatus (410) is adapted to perform various color density measurement and calibration functions, and display appropriate information to the operator through the use of a visual display (490).
Abstract:
Disclosed herein is an apparatus including a structure containing a multiphase fluid and having a transparent window. A collimated light source emits light through the transparent window structure at a wavelength at which a component of a desired phase of the multiphase fluid is absorptive. A photodetector is positioned such that the emitted light passes through the multiphase fluid in the structure and out through the transparent window structure to impinge upon the photodetector. The photodetector has an actual dynamic range for light detection. Processing circuitry adjusts a power of the collimated light source in a series of steps dependent upon a relationship between an output level of the photodetector and a threshold to cause measurement of the emitted light over an effective dynamic range greater than the actual dynamic range. Properties of the multiphase fluid are determined as a function of the measured emitted light.