Abstract:
A time compensation architecture for use with a plurality of optical signals is disclosed. It comprises means for receiving the plurality of optical signals, optical means for selectively delaying the propagation of each of the plurality of optical signals, and means for outputting the time delayed optical signals. The delay may be achieved by changing the indices of refraction or the material lengths of the elements and can either be an active or a passive compensation technique.
Abstract:
An apparatus and method are provided for filtering an optical signal by wavelength. An initially polarised signal is passed through a DGD element effective to alter the polarisation state of the components of the signal according to wavelength. A polarisation filter (polariser) is then provided to attenuate light having given polarisation states from the signal, thereby attenuating the wavelengths associated with said polarisation states. The invention finds particularly utility in the domain of vestigial sideband filtering, allowing the bandwidth of signals within a wavelength division multiplexed system to be reduced without introducing the deleterious effects associated with conventional wavelength filters.
Abstract:
A time compensation architecture for use with a plurality of optical signals is disclosed. It comprises means for receiving the plurality of optical signals, optical means for selectively delaying the propagation of each of the plurality of optical signals, and means for outputting the time delayed optical signals. The delay may be achieved by changing the indices of refraction or the material lengths of the elements and can either be an active or a passive compensation technique.
Abstract:
A light source, including: a pulse generator for providing an initial sequence of light pulses, the pulse generator including an optical source for producing optical pulses; and a modulator in communication with the optical source for increasing or decreasing the selected number of pulses provided by the pulse generator in the selected time period; first and second optical arms, for propagating, respectively, first and second sequences of light pulses, wherein the first optical arm includes a first manipulator configured to generate the first sequence of light pulses from the initial sequence of light pulses, wherein the light source includes a nonlinear optical element arranged to receive the first sequence of light pulses or the second sequence of light pulses, and an optical switch arranged to switch either the first sequence of light pulses or the second sequence of light pulses for reception by the nonlinear optical element.
Abstract:
A programmable two-dimensional simultaneous multi-beam optically operated phased array receiver chip is manufactured based on silicon-on-insulator (SOI) and indium phosphide (InP) semiconductor manufacturing processes, including the SiN process. The InP-based semiconductor is used for preparing a laser array chip and a semiconductor optical amplifier array chip, the SiN is used for preparing an optical power divider, and the SOI semiconductor is used for preparing a silicon optical modulator, a germanium-silicon detector, an optical wavelength multiplexer, a true delay line, and other passive optical devices. The whole integration of the receiver chip is realized through heterogeneous integration of the InP-based chip and the SOI-based chip. Simultaneous multi-beam scanning can be realized through peripheral circuit programming control. The chip not only can realize two-dimensional multi-beam scanning, but also has strong expansibility, such that the chip can be used for ultra-wideband high-capacity wireless communication and simultaneous multi-target radar recognition systems.
Abstract:
Described are systems and methods that provide tunable true time delay of a signal using a compact photonic circuit. The photonic circuit comprises a plurality of waveguides, in which each waveguide corresponds to a different time delay. A particular one of the waveguides corresponding to a desired time delay is selected by tuning the wavelength of a tunable laser. Additional photonic circuits can be used to provide additional selectable time delays.
Abstract:
This invention relates to optical delay lines, particularly to modifying an optical signal passing through an optical delay line. A method of applying a Doppler shift to an optical signal as it passes through an optical delay line is provided, the method comprising the step of progressively altering a property of the optical delay line during passage of the optical signal therethrough such that the time taken for the optical signal to pass therethrough is progressively lengthened or progressively shortened for successive portions of the optical signal. In addition, an optical delay line is provided that may be used in accordance with the above method.
Abstract:
This invention relates to optical delay lines, particularly to modifying an optical signal passing through an optical delay line. A method of applying a Doppler shift to an optical signal as it passes through an optical delay line is provided, the method comprising the step of progressively altering a property of the optical delay line during passage of the optical signal therethrough such that the time taken for the optical signal to pass therethrough is progressively lengthened or progressively shortened for successive portions of the optical signal. In addition, an optical delay line is provided that may be used in accordance with the above method.
Abstract:
A time compensation architecture for use with a plurality of optical signals is disclosed. It comprises means for receiving the plurality of optical signals, optical means for selectively delaying the propagation of each of the plurality of optical signals, and means for outputting the time delayed optical signals. The delay may be achieved by changing the indices of refraction or the material lengths of the elements and can either be an active or a passive compensation technique.
Abstract:
A programmable two-dimensional simultaneous multi-beam optically operated phased array receiver chip is manufactured based on silicon-on-insulator (SOI) and indium phosphide (InP) semiconductor manufacturing processes, including the SiN process. The InP-based semiconductor is used for preparing a laser array chip and a semiconductor optical amplifier array chip, the SiN is used for preparing an optical power divider, and the SOI semiconductor is used for preparing a silicon optical modulator, a germanium-silicon detector, an optical wavelength multiplexer, a true delay line, and other passive optical devices. The whole integration of the receiver chip is realized through heterogeneous integration of the InP-based chip and the SOI-based chip. Simultaneous multi-beam scanning can be realized through peripheral circuit programming control. The chip not only can realize two-dimensional multi-beam scanning, but also has strong expansibility, such that the chip can be used for ultra-wideband high-capacity wireless communication and simultaneous multi-target radar recognition systems.