Abstract:
High voltage high current regulator circuit for regulating current is interposed between first and second terminals connected to an external circuit and comprises at least one main-current carrying cold-cathode field emission electron tube conducting current between the first and second terminals. First and second grid-control cold-cathode field emission electron tubes provide control signals for first and second grids of the at least one main-current carrying cold-cathode field emission electron tube for positive and negative excursions of voltage on the first and second terminals, respectively. The current regulator circuit may be accompanied by a voltage-clamping circuit that includes at least one cold-cathode field emission electron tube. At least two cold-cathode field emission electron tubes, configured to operate at high voltage and high current, are preferably contained within a single vacuum enclosure and are interconnected to provide a circuit function, so as to form a high voltage high current vacuum integrated circuit.
Abstract:
A vacuum device, including a substrate and a support structure having a support perimeter, where the support structure is disposed over the substrate. In addition, the vacuum device also includes a non-evaporable getter layer having an exposed surface area. The non-evaporable getter layer is disposed over the support structure, and extends beyond the support perimeter, in at least one direction, of the support structure forming a vacuum gap between the substrate and the non-evaporable getter layer increasing the exposed surface area.
Abstract:
A vacuum tube includes a filament and two pairs of a grid and an anode. The filament is tensioned linearly and emits thermoelectrons. Both of the anodes are formed on a same face on a planar substrate. The filament is arranged parallel to the planar substrate at a position facing both of the anodes. Each of the grids is arranged, such that the grid faces the anode of a same pair at a first predetermined distance from the anode and has a second predetermined distance from the filament, between the anode and the filament. The vacuum tube further includes an intermediate filament fixing part fixing the filament at a position corresponding to an intermediate point between the anodes of the two pairs.
Abstract:
A vacuum device, including a substrate and a support structure having a support perimeter, where the support structure is disposed over the substrate. In addition, the vacuum device also includes a non-evaporable getter layer having an exposed surface area. The non-evaporable getter layer is disposed over the support structure, and extends beyond the support perimeter, in at least one direction, of the support structure forming a vacuum gap between the substrate and the non-evaporable getter layer increasing the exposed surface area.
Abstract:
A microdevice assembly (20) that includes a device microstructure (22), a housing (30), and a fine grain getter layer (40). The housing (30) has a base portion (32) and a lid (34). The device microstructure (22) is attached to the base portion (32) and the lid (34) is hermetically sealed to the base portion (32). The housing (30) defines a cavity (38) surrounding the device microstructure (22). The fine grain getter layer (40) is on an interior side (42) of the lid (34) for maintaining a vacuum in the cavity (38) surrounding the device microstructure (22). The lid (34) may be made of metal or have at least a metallic surface in the region where the fine grain getter layer (40) is applied. The fine grain getter layer (40) has a sub-micron grain size. There is also a method for making the microdevice assembly (20).
Abstract:
The variety of technologies that have been applied in the development of aonded grid cathode are described. These include chemical vapor deposition of tungsten, molybdenum, iridium BN, and Si.sub.3 N.sub.4 on both sides of a sintered tungsten cathode disk. Zirconium and titanium getters have been used to eliminate nitrogen evolution problems. The getter plates are also used as heat shields for the bonded heater. Films of Si.sub.3 N.sub.4 have been added to the insulation to prevent calcium and barium diffusion into the layer and maintain adequate resistivity and breakdown strength. Plasma etching was introduced as a method of removing Si.sub.3 N.sub.4 from the cathode pores.A new method, erosion lithography, is used for making the fine-detail grid structure, combining air erosion and lithographic techniques.
Abstract translation:描述了已经应用于开发粘合栅极阴极的各种技术。 这些包括在烧结钨阴极盘的两侧上的钨,钼,铱BN和Si 3 N 4的化学气相沉积。 已经使用锆和钛吸气剂来消除氮的进化问题。 吸气板也用作粘合加热器的隔热罩。 已经将Si3N4薄膜添加到绝缘层中,以防止钙和钡扩散到层中并保持足够的电阻率和击穿强度。 引入等离子体蚀刻作为从阴极孔除去Si 3 N 4的方法。 一种新的侵蚀光刻方法,用于制作精细细节的栅格结构,结合风蚀和光刻技术。