Abstract:
The present invention relates to an electron gun cathode mount adapted at one end to secure a thermionic cathode and at the other end to be connected to an attachment member, wherein the electron gun cathode mount is structured so as to be capable of, when in use, reducing heat transfer from the thermionic cathode to the attachment member, and the material forming the electron gun cathode mount has a thermal conductivity of less than 10 Wm−1K−1 at the operating temperature of the thermionic cathode in a direction from the thermionic cathode to the attachment member. The present invention also relates to an electron gun assembly having the electron gun cathode mount installed therein.
Abstract:
An electron beam device for inspecting a sample with an electron beam is described. The electron beam device includes an electron beam source including a thermal field emitter, which includes an emitter tip having an emission facet configured for electron emission, wherein the emission facet has an emission facet width; and a first side facet and a second side facet, wherein an edge facet is formed between the first side facet and the second side facet, which has an edge facet width. The edge facet width is between 20% and 40% of the emission facet width. The electron beam source further includes an extractor device; and a heating device for heating the thermal field emitter. The electron beam device further includes electron beam optics and a detector device for detecting secondary charged particles generated at an impingement or hitting of the primary electron beam on the sample.
Abstract:
A method for producing an electrode (16) for a high-pressure discharge lamp (10), comprising the following steps: a) scanning at least part of the electrode surface for producing an oxide layer (step 120); b) at least partially sublimating the oxide layer formed in step a) (step 120); and c) reducing the rest of the oxide layer.
Abstract:
A method for producing an electrode (16) for a high-pressure discharge lamp (10), comprising the following steps: a) scanning at least part of the electrode surface for producing an oxide layer (step 120); b) at least partially sublimating the oxide layer formed in step a) (step 120); and c) reducing the rest of the oxide layer.
Abstract:
The invention relates to a method for producing an electrode (16) for a high-pressure discharge lamp (10), comprising the following steps: a) passing over at least a portion of the electrode surface for generating an oxide layer (step 120), preferably using a laser beam; b) at least partially sublimating the oxide layer created in step a) (step 120); and c) reducing the remaining oxide layer (140). The invention further relates to a high-pressure discharge lamp (10) comprising at least one electrode thus produced.
Abstract:
PROBLEM TO BE SOLVED: To elongate life of and improve electrooptic performance of a thermionic cathode for a device using electron beams such as a lithography device, a scanning electron microscope (SEM), and a transmission electron microscope (TEM). SOLUTION: The thermionic cathode of an improved type is provided with a conical part with its outside face covered with a carbon film having a comparatively small conical angle of not more than 60°, and has large angular intensity and brightness of emitted electron beams and a long life. COPYRIGHT: (C)2005,JPO&NCIPI