Abstract:
The gain of an amplifier in a receiver operating in a cellular communication system is controlled by determining one or more gain variability metrics, which are then used to produce first and second threshold values. A frequency difference between a current carrier frequency and a target carrier frequency is ascertained and then compared to the threshold values. Target gain setting production is based on comparison results: If the frequency difference is larger than the first threshold, a full automatic gain control algorithm is performed; if the frequency difference is smaller than the first threshold and larger than the second threshold, an optimized automatic gain control algorithm is performed, wherein the optimized automatic gain control algorithm uses a current gain setting as a starting point; and if the frequency difference is smaller than both the first and second thresholds, the current gain setting is used as the target gain setting.
Abstract:
A disclosed radio communication apparatus includes an amplifier configured to amplify a signal received via one of multiple channels including a channel where frequency hopping is conducted; a signal strength measurement circuit configured to measure signal strength of the received signal; and a gain value computation unit configured to compute a gain value for the amplifier based on the signal strength measured by the signal strength measurement circuit. The gain value computation unit is configured to use values specific to the respective channels as coefficients of a function to compute the gain value.
Abstract:
A method for enabling a power amplifier to support multiple powers includes: calculating a transmit power, according to RF parameters delivered by a baseband board, determining a power amplifier voltage according to the transmit power and a corresponding relationship between the transmit power and the power amplifier voltage, and adjusting a supply voltage of the power amplifier, according to the determined power amplifier voltage, so as to adjust an output power of the power amplifier. A RF module includes a conversion module that converts a baseband board signal into a RF signal, an antenna linear device, a storage module, a power amplifier module, an adjustable power module, and a power control module. A test method is employed to determine the relationship between a transmit power and a power amplifier voltage.
Abstract:
An automatic gain control device includes an amplifier for a reception signal, a signal processing unit, a memory, and a control unit. The amplifier can set a gain. The signal processing unit extracts control data from an output from the amplifier and performs information processing for the data. The memory stores the gain setting value of the amplifier. The control unit controls the gain of the amplifier in accordance with a preset control algorithm. On the basis of the result obtained when the control unit computes a gain setting value stored in the memory in accordance with a preset algorithm, the control unit controls the gain of the amplifier in correspondence with operation of switching the frequency of a reception signal, which is accompanied by different frequency monitoring in the compressed mode by the signal processing unit. A radio communication terminal, a control method for an automatic gain control device, a control program for an automatic gain control device, an automatic gain control method, a radio communication system, and a radio communication method are also disclosed.
Abstract:
Disclosed is a method for controlling power level of received signal in an ultra wide band transmission system which uses multi frequency bands, and includes a pre-gain controller (PGC) and a voltage gain amplifier (VGA). The method for controlling a power level of a received signal includes the steps of: a) at the PGCs, detecting which multi frequency band is used in a transmitter of the transmission system; b) at the PGCs, obtaining the voltage gain owing to the discrepancy in the power levels of the received signals; and c) at the PGCs, compensating for the power loss based on the voltage gain.
Abstract:
PROBLEM TO BE SOLVED: To provide a transmission power controller performing high precision transmission power control over a wide dynamic range while decreasing the number of steps required for regulating a transmission power controller. SOLUTION: The transmission power controller comprises a first variable amplification circuit 122 having resolution of 1 dB and a second variable amplification circuit 123 having resolution of 0.1 dB, a section 106 calculating a correction value for compensating degradation of transmission power accuracy due to environmental variation of frequency characteristics and temperature characteristics, and a correction value for compensating transmission power error, a section 107 for calculating a specified transmission power being outputted to a communication partner corrected based on a received signal, and first and second set value calculating sections 108 and 109 for calculating gain values being set in the first and second variable amplification circuits 122 and 123 based on the corrected transmission power. COPYRIGHT: (C)2005,JPO&NCIPI
Abstract:
The gain of an amplifier in a receiver operating in a cellular communication system is controlled by determining one or more gain variability metrics, which are then used to produce first and second threshold values. A frequency difference between a current carrier frequency and a target carrier frequency is ascertained and then compared to the threshold values. Target gain setting production is based on comparison results: If the frequency difference is larger than the first threshold, a first automatic gain control algorithm is performed; if the frequency difference is smaller than the first threshold and larger than the second threshold, a second automatic gain control algorithm is performed, wherein the second automatic gain control algorithm uses a current gain setting as a starting point; and if the frequency difference is smaller than both the first and second thresholds, the current gain setting is used as the target gain setting.
Abstract:
A method for enabling a power amplifier to support multiple powers includes: calculating a transmit power according to RF parameters delivered by a baseband board, determining a power amplifier voltage according to the transmit power and a corresponding relationship between the transmit power and the power amplifier voltage, and adjusting a supply voltage of the power amplifier according to the determined power amplifier voltage so as to adjust an output power of the power amplifier. An RF module includes a conversion module that converts a baseband board signal into an RF signal, an antenna linear device, a storage module, a power amplifier module, an adjustable power module, and a power control module. A test method is employed to determine the relationship between a transmit power and a power amplifier voltage.
Abstract:
A method for enabling a power amplifier to support multiple powers includes: calculating a transmit power, according to RF parameters delivered by a baseband board, determining a power amplifier voltage according to the transmit power and a corresponding relationship between the transmit power and the power amplifier voltage, and adjusting a supply voltage of the power amplifier, according to the determined power amplifier voltage, so as to adjust an output power of the power amplifier. A RF module includes a conversion module that converts a baseband board signal into a RF signal, an antenna linear device, a storage module, a power amplifier module, an adjustable power module, and a power control module. A test method is employed to determine the relationship between a transmit power and a power amplifier voltage.
Abstract:
A disclosed radio communication apparatus includes an amplifier configured to amplify a signal received via one of multiple channels including a channel where frequency hopping is conducted; a signal strength measurement circuit configured to measure signal strength of the received signal; and a gain value computation unit configured to compute a gain value for the amplifier based on the signal strength measured by the signal strength measurement circuit. The gain value computation unit is configured to use values specific to the respective channels as coefficients of a function to compute the gain value.