Abstract:
A receiver for processing a signal comprises a first amplifier circuit and a second amplifier circuit. The first amplifier circuit is operated in association with a first gain profile. The second amplifier circuit is operated in association with a second gain profile. The receiver further comprises a gain control circuit that determines a quality indicator associated with a modulated signal. The gain control circuit adjusts the first gain profile and the second gain profile based at least in part upon the determined quality indicator.
Abstract:
A received frame is branched into a gain control system (20A) for common pilot signals and a gain control system (20B) for individual data signals. The gain control system (20A) controls the gain of the common pilot signals, and the gain control system (20B) controls the gain of the data signals. A signal processor (30) establishes synchronization of frames, outputs a gain control signal (g1) so that the gain of the common pilot signal is constant, to a gain control circuit (21a) for the common pilot signals, and outputs a gain control signal (g2) so that the gain of the data signal is constant, to a gain control circuit (21b) for the data signals. The gain is controlled to be constant, thereby preventing saturation of ADC (26a, 26b, 27a, 27b) and S/N deterioration.
Abstract:
The invention provides an automatic gain control and antenna selection method used in a receiver of a radio communication system. The received signal power is estimated by digital signal processing after analog-to-digital conversion in the system, in order to adjust the gain of the front end analog signal until the magnitude of the analog signal is adjusted to an optimum range of the digital signal processing. In addition, the ADC is utilized to estimate the signal power as the basis of the antenna selection.
Abstract:
A method and apparatus for generating the adaptive gain control signals in a communications receiver is disclosed. The present invention can be used with existing two stage gain architectures, and overcomes many undesirable characteristics of the previous mechanism. An apparatus is presented wherein each of a plurality of RF AGC gain controllable amplifiers are individually controlled by individual AGC control signals generated by an AGC controller so that the level of the output signal from each of the RF AGC gain controllable amplifiers is individually optimized for tuner performance.
Abstract:
The present invention discloses a proactive gain control system for a communications receiver. The proactive gain control system includes a variable gain module for outputting an output signal in response to an input signal. A detector detects the output signal and outputs a detection signal representing a signal strength of the output signal. A traffic monitor monitors the output signal and outputs a traffic profile signal indicating that a traffic profile for the input signal will change. A gain computing module outputs a gain adjustment value in response to the detection signal and the traffic profile signal. A gain control module outputs a gain control signal to the variable gain module, which determines a gain between the input and output signals, in response to the gain adjustment value.