Abstract:
A scanning apparatus having an adjusting means is provided to allow the optical scanning module against the platen. The adjusting means is assembled with the carriage that carries the optical scanning module. The adjusting means at least comprises a roller and a rotated portion, wherein the roller tightly contacts the rotated portion. When the carriage is moving (during a scanning operation), the roller is rotating and friction (between the roller and the rotating assembly) causes the rotated portion to turn until contacting with the bottom surface of the optical scanning module, thereby allowing the optical scanning module against the platen.
Abstract:
Disclosed is an adjustable fixing device of a CCD plate comprising at least a central supporter and a mask device. The central supporter is made of non-transparency material. The mask device and the central supporter are approximately combined by a supporting device. The mask device and the central supporter are moved with respect to one another in a traveling range. An adhesive agent is filled to the place between the mask device and the central supporter for combining the mask device and the central supporter in a fixing position in the traveling range. Thereby, the central supporter is made of non-transparency material without needing to be performed with light shield process or installed with light shield element for effectively reducing cost. A preferred guiding structure is formed between the central supporter and the mask device for guiding the central supporter and the mask device so that they may move steadily. A larger adhesive area is formed between the central supporter and the mask device so that the central supporter and the mask device are more steadily combined.
Abstract:
An optical system inside a scanner for scanning a document. The optical system has a carrier box, a light source, a set of light reflecting mirrors, a circuit board, a converging mirror and an optical sensor. The carrier box has a hollow interior and a receiving slot in the upper surface thereof. The light source is fixed outside the carrier box such that light emitted from a lamp and reflected back from a document is able to pass through the receiving slot into the carrier box. The set of reflecting mirrors inside the carrier box reflects the light beam towards the converging lens and focuses upon the optical sensor. The optical sensor converts intensity of the light beam into electrical signals. Image distance between the converging lens and the optical sensor are adjusted before positioning the lens and sensor on the circuit board. The circuit board is placed on a sliding structure inside the carrier box so that object distance between the converging lens and document surface can be adjusted by sliding the circuit board to obtain an optimal image resolution.
Abstract:
Disclosed herein is an improved imaging system of the type having a photosensor package and at least one optical component, e.g, a lens, mounted within an optical assembly housing. The photosensor package may be mounted to a substrate, such as a printed circuit board, in a conventional manner. The substrate, however, may be formed having a shorter length than the photosensor package. This shorter length causes the ends of the photosensor package to extend beyond the substrate and, thus, be exposed. The exposed ends of the photosensor package, in turn, allow the photosensor package to be directly referenced to reference surfaces formed on the optical assembly housing.
Abstract:
An optical scanning unit includes a light source, a lens, a deflector, a lens holder, a support member, a force-generating member, and a force-transmitting member. The light source emits a light beam. The lens passes through the light beam. The deflector rotatably deflects the light beam coming from the lens. The lens holder, provided between the light source and the deflector, holds the lens. The support member has a first face faced to a vertically-downward direction, and extends in a direction from the light source to the deflector. The lens holder is movably supported by the first face of the support member. The force-generating member, provided to a second face of the support member, generates a force. The second face is opposite to the first face. The force-transmitting member transmits the force generated by the force-generating member to the lens holder to move the lens holder along the first face.
Abstract:
An original reading unit is provided that is superior in the performance of the adjustment of line sensors. According to the present invention, between a unit base and a transparent original support plate, multiple sensor assemblies are arranged, to form a zigzag pattern, as a first array for reading an original and a second array for reading the original following the first array. Each of the sensor assemblies includes a sensor holder, a line sensor and a focus setup unit. Each of the sensor holders, which serve as fulcrums, are rotatable at a single pivot (a rotation center), along the wall of a unit base that is parallel to the original support plate. When the sensor holders are rotated and positioned at predetermined locations, they are fixed to the wall. The line sensors 51 are held, relative to the sensor holders, in the main scanning direction and in the sub-scanning direction, and are moved in an approaching or separating direction in which the line sensors approach or are separated from the wall and the original support plate. The focus setup units, each of which includes coil springs and spacers, move the line sensors 51 in the approaching or separating direction, and position the line sensors 51 at locations whereat focuses are adjusted.
Abstract:
An imaging system (60) comprises a housing (200) with reference surfaces (274,276), a lens (570) in contact with the reference surfaces (274,276), a member (600) retained to the housing in contact with the lens, and a spring (720) located between and in contact with a portion (282,332,342) of the housing and the lens. In a first operating condition, the member (600) is retained to the housing at a first location (350,360,370,380) and the lens is translatable with respect to the housing (200) and in a second operating condition, the member (600) is retained to the housing at a second location (420,424) and the lens is not translatable with respect to the housing.
Abstract:
An adjusting method for a lens unit used in an image reading apparatus which images image information of an original onto an image reading unit by the lens unit and reads the image information, the lens unit including rotationally-symmetrical lenses, a lens barrel including the rotationally-symmetrical lenses and an adjusting lens, the adjusting method including: performing rotational adjustment of the lens barrel with respect to the adjusting lens; and imaging an adjusted chart onto one-dimensional photoelectric transducers via the lens unit, obtaining contrast depth characteristics of images corresponding to at least three angles of field of the lens unit among images of the adjusted chart, and, according to the obtained contrast depth characteristics, performing position adjustment of the adjusting lens in at least one of an array direction of the one-dimensional photoelectric transducers, a direction orthogonal to the array direction and an optical axis direction of the lens unit.
Abstract:
A technique is provided which can realize scanning by a light flux having a desired optical characteristic in a light beam scanning device adopting a multi-beam optical system. There are provided a pre-deflection optical system that shapes divergent light beams from plural light sources into a light flux having a cross-sectional shape long in a specified direction, and a rotary deflector that deflects the light flux shaped by the pre-deflection optical system and scans it in the specified direction, and the pre-deflection optical system includes a first optical system that weakens a degree of divergence of the divergent light beams from the plural light sources or converts them into parallel light beams or converging light beams, a second optical system including at least one lens having a negative power in a rotation axis direction of the rotary deflector, and a third optical system having a positive power in the rotation axis direction of the rotary deflector.
Abstract:
A technique is provided which can realize scanning by a light flux having a desired optical characteristic in a light beam scanning device adopting a multi-beam optical system. There are provided a pre-deflection optical system that shapes divergent light beams from plural light sources into a light flux having a cross-sectional shape long in a specified direction, and a rotary deflector that deflects the light flux shaped by the pre-deflection optical system and scans it in the specified direction, and the pre-deflection optical system includes a first optical system that weakens a degree of divergence of the divergent light beams from the plural light sources or converts them into parallel light beams or converging light beams, a second optical system including at least one lens having a negative power in a rotation axis direction of the rotary deflector, and a third optical system having a positive power in the rotation axis direction of the rotary deflector.