Abstract:
Metallic solutions at room temperature used a laser point source target droplets. Using the target metallic solutions results in damage free use to surrounding optical components since no debris are formed. The metallic solutions can produce plasma emissions in the X-rays, XUV, and EUV(extreme ultra violet) spectral ranges of approximately 11.7 nm and 13 nm. The metallic solutions can include molecular liquids or mixtures of elemental and molecular liquids, such as metallic chloride solutions, metallic bromide solutions, metallic sulphate solutions, metallic nitrate solutions, and organo-metallic solutions. The metallic solutions do not need to be heated since they are in a solution form at room temperatures.
Abstract:
An X-ray source to be introduced into the body vessels of a living being by means of a catheter is designed as a laser plasma X-ray source and is arranged in a housing, which has a diameter of a maximum of about 2 mm transversely to the direction from which the X-ray source is intended to be introduced into the body vessel. A catheter with such an X-ray source and a system for an intracorporeal X-ray source irradiation with such a catheter also are provided.
Abstract:
The generation of ultrabright, multikilovolt coherent tunable x-radiation resulting from amplification on hollow atom transition arrays is described. Amplification has been demonstrated by physical evidence including (a) the observation of selected spectral components of several Xeqnull hollow atom transition arrays (qnull30, 31, 32, 34, 35, 36, 37) radiated axially from confined plasma channels, (b) the measurement of line narrowing that is spectrally correlated with the amplified transitions, (c) evidence for spectral hole-burning in the spontaneous emission, a manifestation of saturated amplification, that corresponds spectrally with the amplified lines, and (d) the detection of an intense narrow (nullnullxnull0.2 mr) directed beam of radiation in the far field of the source.
Abstract:
An electromagnetic wave energy emitter including a generally cylindrical probe including generally coaxial first and second electrodes, each of the electrodes having an at least partially cylindrical shape, one of the electrodes being energizable to emit electrons and the other of the electrodes being adapted to receive the electrons and generate electromagnetic wave energy. A grid element may be placed between the first and second electrodes. A controller may be in communication with the grid element, adapted to control a potential of the grid element. The grid element may have an at least partially cylindrical shape. The grid element may be placed concentrically or non-concentrically with respect to the first and second electrodes.
Abstract:
An apparatus and method for the generation of ultrabright multikilovolt x-rays from saturated amplification on noble gas transition arrays from hollow atom states is described. Conditions for x-ray amplification in this spectral region combine the production of cold, high-Z matter, with the direct, selective multiphoton excitation of hollow atoms from clusters using ultraviolet radiation and a nonlinear mode of confined, self-channeled propagation in plasmas. Data obtained is consistent with the presence of saturated amplification on several transition arrays of the hollow atom Xe(L) spectrum (nullnull2.9 null). An estimate of the peak brightness achieved is null1029 nullnullsnull1nullmmnull2nullmrnull2 (0.1% Bandwidth)null1, that is null105-fold higher than presently available synchotron technology.
Abstract:
A main laser beam is focused to irradiate a tip of a high-density spouting gas flow formed by heating and then vaporizing a target material by a light beam for preheating making it to the plasma. As the result, the generation of a fast debris in the target material can be suppressed. And a discharge of the fast debris from the target material is also suppressed and extinguished by heating and then vaporizing them by a light beam for transpiration which is emitted at an adjusted time after the generation of the plasma. Thus, the fast debris which still appears in the plasma formed after preheating can be almost perfectly vaporized and extinguished by the light beam for transpiration.
Abstract:
An improved efficiency x-ray source comprised of a fluorescent x-ray tube and resonant high voltage power supply. The fluorescent x-ray tube is an arc discharge tube filled with a low-pressure vapor, xenon for example, that is excited by high-frequency, high-voltage pulses to produce x-rays. The power supply passes arcs through the tube that produce significantly more radiation per unit energy than equivalent conventional vacuum x-ray tubes. The power supply may be a high frequency resonant AC supply or it may be rectified to give resonant DC. The fluorescent tube is driven in cold cathode mode, avoiding a fragile filament. The arc gap may also be large or very small in order to serve as a broad beam source or point source.
Abstract:
A debris containment shutter useable in a photolithography system comprises one or more moving members that sweep and/or deflect debris that is associated with plasma generated from a target away from the structures to be protected from the debris. The members may be configured as a structure that moves across the plasma space in which the debris populates, such as a rotating or reciprocating structure. For controlling debris associated with pulsed radiation, the movement of the members is synchronized with the pulses of plasma emitted radiation. In one aspect of the present invention, the shutter comprises a plate rotatable about an axis of rotation, the plate defining at least one opening therethrough and at least one member (e.g., in the form of baffles or vanes) extending from a surface of the plate. The members may extend radially outward from a hub or inward from a perimeter. In another aspect of the invention, the shutter includes a manifold which extends at least partially around the perimeter of the members. The manifold preferably defines a volume for collection of debris from a space traversed by the member when the plate is rotated.
Abstract:
A system for generating tunable pulsed monochromatic X-rays includes a tabletop laser emitting a light beam that is counter-propagated against an electron beam produced by a linear accelerator. X-ray photon pulses are generated by inverse Compton scattering that occurs as a consequence of the nullcollisionnull that occurs between the electron beam and IR photons generated by the laser. The system uses a novel pulse structure comprising, for example, a single micropulse. In this way, pulses of very short X-rays are generated that are controllable on an individual basis with respect to their frequency, energy level, nulldirection,null and duration.
Abstract:
The invention relates to a window transparent to electron rays comprising a foil (1, 10, 300a) transparent to electron rays and separated from a carrier substrate as well as a retaining element (2, 300b) for supporting a peripheral region of the foil transparent to electron rays in the operational state, which retaining element (2, 300b) is made of a material which has a linear thermal expansion coefficient which matches the linear thermal expansion coefficient of the foil material. The invention further relates to a method of manufacturing a window transparent to electron rays and an X-ray device with such a window.