Abstract:
Multiple protocol tunnels (e.g., IPsec tunnels) are deployed to enable an access terminal that is connected to a network to access a local network associated with a femto access point. A first protocol tunnel is established between a security gateway and the femto access point. A second protocol tunnel is then established in either of two ways. In some implementations the second protocol tunnel is established between the access terminal and the security gateway. In other implementations the second protocol tunnel is established between the access terminal and the femto access point, whereby a portion of the tunnel is routed through the first tunnel.
Abstract:
Systems and methodologies are described that facilitate multiplexing communications from multiple downstream access points to one or more mobility management entities (MME). In particular, a concentrator component is provided that can establish a single transport layer connection with an MME along with multiple application layer connections over the single transport layer connection for each of multiple downstream access points and/or related mobile devices. The downstream access points and/or mobile devices can provide identifiers to the concentrator component, which can utilize the identifiers to track communications with the MME. In this regard, the MME can additionally include identifiers received from the concentrator component in subsequent communications to facilitate identifying the appropriate downstream access point and/or mobile device.
Abstract:
Techniques for transmitting information in a wireless network are described. In an aspect, information may be conveyed based on specific resources used to send a signal, e.g., a pilot. A pseudo-random function may receive the information to convey via the signal and possibly other information and may provide pseudo-random values, which may be used to select the resources to use to send the signal. In one design, a transmitter (e.g., a base station for a sector) may determine first information (e.g., a sector ID) to convey via a pilot and may also determine second information for absolute time (e.g. a pilot cycle index). The transmitter may determine resources (e.g., slots) to use to send the pilot based on the first and second information and possibly based further on a PN offset assigned to the sector. The transmitter may transmit the pilot in the determined resources.
Abstract:
Local breakout is provided by one or more nodes (e.g., a local access point and/or a local gateway) in a wireless network to facilitate access to one or more local services. In conjunction with local breakout, multiple IP points of presence relating to different levels of service may be provided for an access point. For example, one point of presence may relate to a local service while another point of presence may relate to a core network service. IP point of presence may be identified for an over-the-air packet to indicate a termination point for the packet. Also, different mobility management functionality may be provided at different nodes in a system whereby mobility management for a given node may be provided by a different node for different types of traffic. Thus, an access terminal may support multiple NAS instances. In addition, different types of paging may be provided for different types of traffic. Furthermore, messages associated with one protocol may be carried over another protocol to reduce complexity in the system.
Abstract:
Quality of service information can be used to facilitate wireless communication. A network entity, such as a terminal, as well as a network can initialize an authorization to establish a link using quality of service information. Various features can be integrated with the use of quality of service information, such as having quality of service reservation before a call and supplying a permanent identity for use in correlation.
Abstract:
Embodiments described herein relate to connected-state radio session transfer in wireless communications. A source access network controller may lock a source radio session associated with an access terminal (e.g., in response to detecting a handoff condition associated with the access terminal), where the source access network controller may be in communication with a data network. The source access network controller may also instruct a target access network controller to create a target radio session corresponding with the source radio session, and to establish a communication route between the data network and the access network via the target ANC. The source access network controller may then freeze a state associated with the source radio session and transmits the frozen state to the target access network controller. The target access network controller may subsequently unfreeze the received state and further unlock the radio session, hence resuming control of the access terminal.