Abstract:
Disclosed is a semi-aromatic polyamide resin composition including 100 parts by mass of a semi-aromatic polyamide (A), 20 to 110 parts by mass of a fibrous reinforcing material (B) and 0.1 to 5 parts by mass of an azine dye (C), wherein the semi-aromatic polyamide (A) includes as the constituent components thereof an aromatic dicarboxylic acid component, an aliphatic diamine component and a monocarboxylic acid component, and has a melting point of 300° C. or higher; and the monocarboxylic acid component constituting the semi-aromatic polyamide (A) is an aliphatic monocarboxylic acid having a molecular weight of 200 or more.
Abstract:
Polycarbonate blend compositions are disclosed. The compositions include at least one polycarbonate useful for high heat applications. The compositions can include one or more additional polymers. The compositions can include one or more additives. The compositions can be used to prepare articles of manufacture, and in particular, automotive bezels.
Abstract:
Disclosed is a semiaromatic polyamide resin composition including a semiaromatic polyamide (A) and a polyhydric alcohol (B), wherein a mass ratio (A/B) between the semiaromatic polyamide (A) and the polyhydric alcohol (B) is 99.95/0.05 to 90/10; and the semiaromatic polyamide (A) includes as constituent components thereof an aromatic dicarboxylic acid component and an aliphatic diamine component, and has a melting point of 300 to 350° C.
Abstract:
A protective tube for a coil spring and a method for manufacturing the same are disclosed herein. The protective tube for a coil spring is manufactured by: mixing 40-70 parts by weight of a thermoplastic elastomer, 20-40 parts by weight of a thermoplastic resin, 0.2-5 parts by weight of an antioxidant, and 0.2-5 parts by weight of a crosslinking agent to obtain a mixture; pelletizing the mixture to obtain pellets; extrusion-molding the pellets into a tube; crosslinking the tube by radiation; enlarging the diameter of the crosslinked tube while forming the tube into a spiral shape by heating; and setting the enlarged-diameter tube by cooling.
Abstract:
The present invention provides a polyamide resin composition comprising (A) a polyamide resin, (B) an aluminic acid metal salt, and (C) an organic acid, wherein the content of the aluminic acid metal salt (B) is larger than 0.6 parts by mass based on 100 parts by mass of the polyamide resin (A).
Abstract:
A silicone formulation that has a) at least one condensation-crosslinkable hydroxy- or alkoxy-terminated polydiorganosiloxane, b) at least one silane crosslinking agent or siloxane crosslinking agent for the hydroxy- or alkoxy-terminated polydiorganosiloxane and c) one or more fillers, where one filler is the main filler, the proportion by weight of which in the silicone formulation is greater than that of any other filler that may be present, and the decomposition temperature of the main filler is above 350° C., with the proviso that the proportion of the main filler in relation to the total weight of the fillers is at least 20% by weight. The silicone formulation is particularly suitable as resilient adhesive or sealant, more particularly for high-temperature applications, e.g. for producing or repairing facades, fireproof joints, windows, insulative glazing, solar installations, vehicles, white or brown goods, heaters, electronic components, or sanitary installations, or for the construction sector.
Abstract:
A thermoplastic resin composition is highly resistant to thermal discoloration during retention in a molding process and provides molded articles excellent in fluidity, impact resistance, heat resistance, surface appearance, color reproduction properties and vibration damping properties. A thermoplastic resin composition includes 20 to 70 parts by mass of a graft copolymer (A) obtained by graft copolymerizing a vinyl monomer selected from unsaturated nitrile monomers, aromatic vinyl monomers and (meth)acrylate ester monomers, in the presence of a rubbery polymer having a volume average particle diameter of 80 to 600 nm; and 30 to 80 parts by mass of a copolymer (B) obtained by copolymerizing a vinyl monomer mixture including vinyl monomers selected from unsaturated nitrile monomers, aromatic vinyl monomers and (meth)acrylate ester monomers, the vinyl monomer mixture including styrene and α-methylstyrene as the aromatic vinyl monomers, (total of the graft copolymer (A) and copolymer (B) is 100 parts by mass).
Abstract:
Suitable stabilizers for organic material are a mixture comprising A. at least one oligomeric compound, comprising repeat units of the formula (I), in which the meanings of the symbols are as follows: R1 is hydrogen, C1-C6-alkyl, formyl, C2-C6-alkanoyl, C1-C12-alkoxy, C5-C6-cycloalkoxy, cyanomethyl, 2-hydroxyethyl, benzyl or a radical of the formula —CR′═—H—CO—OR″, where R′ is hydrogen, C1-C6-alkyl or a radical of the formula —CO—OR″, and R″ is C1-C18-alkyl, C5-C8-cycloalkyl, C7-C18-aralkyl, phenyl, or tolyl; R2 is a mixture composed of C14-C28-alkyl groups, where two of these alkyl groups whose number of carbon atoms is not permitted to differ by more than two respectively make up at least 30% of this mixture; R3 and R4, independently of one another, are C1-C6-alkyl; and B. at least one compound of the formula (II) or (Ill) where the meanings of the symbols and indices are as follows: n and m, independently of one another, are a natural number from 2 to 22, and R1, R3 and R4, independently of one another, have the meanings given in formula (I).
Abstract:
This invention relates to compositions comprised of diene-based elastomers containing an antioxidant comprised of a combination of tris(nonyl phenyl) phosphite (TNPP) and tetramethylethylene diamine (TMEDA). The invention further relates a rubber composition and to a polystyrene composite containing such elastomer compositions. The invention additionally relates to articles of manufacture thereof, including tires and polystyrene based articles. In one embodiment, the invention relates to a process of recovery of diene-based elastomer(s) from an organic solvent solution thereof by steam stripping the organic solvent therefrom in the presence of a combination of the TNPP and TMEDA.
Abstract:
The present invention relates to copolycarbonates and a composition comprising the same. The copolycarbonate according to the present invention has a structure in which a specific siloxane compound is introduced in a main chain of the polycarbonate and thus, has characteristics of providing improved impact strength at low-temperature and improved YI (yellow index) simultaneously.