Abstract:
A vessel for transporting liquefied natural gas is provided. The vessel generally includes a gas transfer system for on-loading and off-loading natural gas to and from the vessel at essentially ambient temperature. The vessel further includes a gas processing facility for selectively providing liquefaction and regasification of the natural gas. The vessel also includes a containment structure for containing the liquefied natural gas during transport. The vessel may be a marine vessel or a barge vessel for transporting LNG over water, or a trailer vessel for transporting LNG overthe-road. A method for transporting LNG is also provided, that provides on-loading of natural gas onto a vessel, condensing the natural gas, storing the gas on the vessel in liquefied form, transporting the gas to an import terminal, vaporizing the gas, and off-loading the gas at the terminal.
Abstract:
Ein für den Einbau in Kraftfahrzeuge bestimmter Tank für kryogene Flüssig keiten besteht aus einem Aussenbehälter (1) und einem darin aufgehängten Innenbehälter (2), wobei zur Positionierung des Innenbehälters bezüglich des Aussenbehälters Magnete herangezogen sind. Um mit geringstem Aufwand eine zur Unterstützung des Innenbehälters ausreichende Kraft zu erzeugen, ist an der Wand des Innenbehälters (2) mindestens ein Element (6,6',16,16') aus einem supraleitendem Werkstoff in wärmeleitender Verbindung mit dessen tiefkaltem Inhalt und sind an der Innenseite des Aussenbehälters (1) oder an einem mit ihm verbundenen Teil Permanentmagnete (8,8', 18,18') angebracht.
Abstract:
A storage system for an absorbing gas including a plurality briquette units situated within the storage tank is disclosed. In some embodiments, each briquette unit includes a liner or open vessel, and compressed gas-absorbing particulate matter associated with the liner for external support. In some embodiments, the liner or vessel maintains the form of the briquette unit. The liner or vessel do not form a pressure tight vessel, and in some embodiments, the local pressure rating of the liner or vessel is less than the gas pressure within the storage tank. Exemplary gas-absorbing materials include but are not limited to methane and hydrogen adsorbing materials such as activated carbon, zeolite, and other appropriate hydrocarbon gas and/or hydrogen adsorbing materials. Optionally, each briquette unit includes a wrapper for preventing circulation of said particulate matter within the storage tank. Optionally, the storage system includes a mechanism for supplying or removing heat to at least one briquette unit. Furthermore, a method for manufacturing any of the aforementioned gas storage systems is disclosed. Some embodiments of the present invention provide methane-powered motor vehicles including but not limited to automobiles, buses, trucks and ships including a storage system with compressed methane-adsorbing particulate matter.
Abstract:
L'installation (11) comprend une source (15) de gaz sous pression et des moyens (17) d'évacuation, reliés sélectivement au recipient (13) par une conduite de liaison (49). Le procédé comprend les étapes suivantes : (a) on purge, au moins partiellement le récipient (13) ; puis (b) on remplit au moins partiellement le récipient (13). Ce procédé comprend en outre une étape de vérification dans laquelle, durant les étapes (a) et (b), (i) on mesure la température qui règne en au moins un point de la conduite de liaison (49) ; (ii) on enregistre la variation temporelle de ladite température ; (iii) on compare ladite variation à une courbe de référence ; et (iv) on estime la qualité du remplissage du récipient (13) en fonction du résultat de cette comparaison. Application au remplissage de bouteilles de gaz destinées au domaine médical.
Abstract:
A utility belt includes a gas storage vessel for providing a portable and ambulatory supply of oxygen for the person wearing the belt or a person being attended to by the person wearing the belt. In particular, the utility belt provides a portable supply of pressurized gas while it is suspended from the body of a user, with a plurality of item holders, such as implement holsters and utility pouches, suspended from the utility belt. The supply of pressurized gas is provided by a gas storage vessel carried on the utility belt. The gas storage vessel is formed from a plurality of polymeric hollow chamber having either an ellipsoidal or spherical shape and interconnected by a plurality of relatively narrow conduit sections disposed between consecutive ones of the chambers. The gas storage vessel includes a reinforcing filament wrapped around the interconnected chambers and interconnecting conduit sections to limit radial expansion of the chambers and conduit sections when filled with a fluid under pressure. The container system further includes an outlet valve/regulator attached to the gas storage vessel for controlling fluid flow into and out of the gas storage vessel and a gas delivery system for delivering gas from the gas storage vessel to a user in a breathable manner.
Abstract:
A utility belt includes a gas storage vessel for providing a portable and ambulatory supply of oxygen for the person wearing the belt or a person being attended to by the person wearing the belt. In particular, the utility belt provides a portable supply of pressurized gas while it is suspended from the body of a user, with a plurality of item holders, such as implement holsters and utility pouches, suspended from the utility belt. The supply of pressurized gas is provided by a gas storage vessel carried on the utility belt. The gas storage vessel is formed from a plurality of polymeric hollow chamber having either an ellipsoidal or spherical shape and interconnected by a plurality of relatively narrow conduit sections disposed between consecutive ones of the chambers. The gas storage vessel includes a reinforcing filament wrapped around the interconnected chambers and interconnecting conduit sections to limit radial expansion of the chambers and conduit sections when filled with a fluid under pressure. The container system further includes an outlet valve/regulator attached to the gas storage vessel for controlling fluid flow into and out of the gas storage vessel and a gas delivery system for delivering gas from the gas storage vessel to a user in a breathable manner.
Abstract:
The invention relates to a fibre-reinforced pressure vessel (1, 6) comprising a rigid gas- or fluid-tight body (2, 7, 13, 19) overwound with fibre filaments (3, 10, 11, 18), whereby the fibre filaments are wound such that at least a number of fibre filaments can freely move in respect of one another and when the pressure vessel is under internal pressure the fibre filaments are strained exactly in their longitudinal direction. The invention also relates to a method of manufacturing a fibre-reinforced pressure vessel whereby no matrix material (for example, resin) is used so that at least a number of fibre filaments would be incorporated in a matrix for that section of the pressure vessel in which the fibre filaments can freely move in respect of one another.
Abstract:
A transport unit includes a plurality of permanent magnets arranged to provide a magnetic holding field for protecting hyperpolarized gas during storage and/or transport. The permanent magnets are configured in a relatively light weight manner to project a substantially cylindrical magnetic holding field or spherical holding field in space. The magnet arrangements can include primary magnets and field shaping secondary magnets which act to enlarge the region of homogeneity. The permanent magnet arrangement can also be provided with a cylindrical shaped flex sheet magnetically activated to provide the magnetic holding field. The permanent magnet arrangements do not require disassembly to insert or remove one or more containers of hyperpolarized gas in or out of the transport unit.
Abstract:
A resilient multi-layer container is configured to receive a quantity of hyperpolarized noble fluid such as gas and includes a wall with at least two layers, a first layer with a surface which minimizes contact-induced spin-relaxation and a first or second layer which is substantially impermeable to oxygen. The container is especially suitable for collecting and transporting He. The resilient container can be formed of material layers which are concurrently responsive to pressure such as polymers, deuterated polymers, or metallic films. The container can include a capillary stem and/or a port or valve isolation means to inhibit the flow of gas from the main volume of the container during transport. The resilient container can be configured to directly deliver the hyperpolarized noble gas to a target interface by deflating or collapsing the inflated resilient container. In addition, single layer resilient containers with T1's of above 4 hours for Xe and above 6 hours for He include materials with selected relaxivity values. In addition, a bag with a port fitting or valve member and one or more of a capillary stem and port isolation means is configured to minimize the depolarizing effect of the container valve or fitting(s). Also disclosed is a method for determining the gas solubility in an unknown polymer or liquid using the measured relaxation time of a hyperpolarized gas.
Abstract:
This invention relates to a process for liquefying a gas stream rich in methane and having a pressure above about 3103 kPa (450 psia). The gas stream is expanded to a lower pressure to produce a gas phase and a liquid product having a temperature above about -112 DEG C (-170 DEG F) and a pressure sufficient for the liquid product to be at or below its bubble point. The gas phase and the liquid product are then phase separated in a suitable separator, and the liquid product is introduced to a storage means for storage at a temperature above about -112 DEG C (-170 DEG F).