Abstract:
A lubricant composition characterized as having a viscosity of less than about 150,000 cP at −40° C., a kinematic viscosity of less than about 150,000 cSt at −40° C., and a kinematic viscosity of at least about 18.5 cSt at 100° C. for use in association with a device involving metal to metal contact of moving parts comprising: (a) base-stock comprising (i) at least one relatively low viscosity polyalphaolefin, (ii) at least one ester, and at least one Group III base oil; (b) viscosity improver comprising (i) at least one relatively high viscosity polyalphaolefin, and (ii) a least one olefin copolymer; (c) a performance additive comprising at least one additive effective to improve at least one property of the lubricant and/or the performance of the equipment in which the lubricant is to be used; (d) at least one pour-point depressant; and, optionally, (e) at least one antifoam agent.
Abstract:
A system and method of processing an alloy ingot or other alloy workpiece to reduce thermal cracking and reduce friction between the workpiece and the forging die may generally comprise positioning a multi-layer pad between the workpiece and the forging die. An article for processing an alloy ingot or other alloy workpiece to reduce thermal cracking also is disclosed. The present disclosure also is directed to an alloy workpieces processed according to the methods described herein, and to articles of manufacture including or made from alloy workpieces made according to these methods.
Abstract:
A multilayer paper-based wet friction material of an automotive auto transmission may improve noise and vibration characteristics, heat resistance, wear resistance, compression resistance, and oil absorbency. The paper-based wet friction material of an automotive auto transmission includes: a first layer using cellulose pulp as a matrix and including a first functional additive; a second layer stacked on the first layer, using the cellulose pulp as the matrix, and including the second functional additive; and a hydrogen bonding layer mediating between the first layer and the second layer. The cellulose pulp of the first and second layers is cotton linter.
Abstract:
An article comprises a substrate; a coating comprising a carbon composite; and a binding layer disposed between the substrate and the coating. The carbon composite comprises carbon and a binder containing one or more of the following: SiO2; Si; B; B2O3; a metal; or an alloy of the metal; and the metal comprises one or more of the following: aluminum; copper; titanium; nickel; tungsten; chromium; iron; manganese; zirconium; hafnium; vanadium; niobium; molybdenum; tin; bismuth; antimony; lead; cadmium; or selenium.
Abstract:
The invention concerns a tubular element for drilling and/or working hydrocarbon wells, having an end (1; 2) comprising at least one threaded zone (3; 4), characterized in that the end (1; 2) is at least partially coated with a dry film (12) comprising a matrix (13) comprising a mixture of at least one alkaline polysilicate and at least one semi-crystalline thermoplastic organic polymer. The invention also concerns a method for producing a dry film (12) comprising a matrix (13) comprising a mixture of at least one alkaline polysilicate and at least one semi-crystalline thermoplastic organic polymer on such a tubular element for drilling and/or working hydrocarbon wells.
Abstract:
A system and method of processing an alloy ingot or other alloy workpiece to reduce thermal cracking and reduce friction between the workpiece and the forging die may generally comprise positioning a multi-layer pad between the workpiece and the forging die. An article for processing an alloy ingot or other alloy workpiece to reduce thermal cracking also is disclosed. The present disclosure also is directed to an alloy workpieces processed according to the methods described herein, and to articles of manufacture including or made from alloy workpieces made according to these methods.
Abstract:
The present invention relates to compositions for use in refrigeration, air-conditioning, and heat pump systems wherein the composition comprises a tetrafluoropropene and at least one other component. The compositions of the present invention are useful in processes for producing cooling or heat, as heat transfer fluids, foam blowing agents, aerosol propellants, and fire suppression and fire extinguishing agents.
Abstract:
Lubricating compositions for use in the casting of steel, in particular in continuous casting processes are provided. Methods for making and using such compositions are also provided.
Abstract:
A protective agent for an image bearing member of an image forming apparatus. The protective agent is applied onto a surface of the image bearing member and includes a hydrophobic organic compound (A), an inorganic fine particle (B), and an inorganic lubricant (C).
Abstract:
A method for producing and commissioning a transmission with a water-based lubricant comprises the following steps. A mixture of a vaporizable liquid, a comminuted solid lubricant and a preserving agent (22) are applied (21) to the finished rotary parts (20) and then dried (23), whereby a coating forms on them. The rotary parts with the coating are installed in the transmission housing and the assembled transmission is filled with a cooling liquid (25), which is primarily essentially water. The transmission is put into operation for the first time (27), wherein the lubricant for the further operation is only formed by abrasion of the rotary parts and distribution of the abraded matter in the cooling liquid. The transmission is then ready for operation (28). Furthermore, a lubricant produced by this method is described.