Abstract:
The present invention relates to a system and method for improving the efficiency of fuel cells. The storage system includes an outer shell and at least one bladder positioned inside the outer shell. A primary chamber is defined between the outer shell and the bladder, and a secondary chamber is defined interior to the bladder.
Abstract:
Described herein is a portable storage device that stores a hydrogen fuel source. The storage device includes a bladder that contains the hydrogen fuel source and conforms to the volume of the hydrogen fuel source. A housing provides mechanical protection for the bladder. The storage device also includes a connector that interfaces with a mating connector to permit transfer of the fuel source between the bladder and a device that includes the mating connector. The device may be a portable electronics device such as a laptop computer. Refillable hydrogen fuel source storage devices and systems are also described. Hot swappable fuel storage systems described herein allow a portable hydrogen fuel source storage device to be removed from a fuel processor or electronics device it provides the hydrogen fuel source to, without shutting down the receiving device or without compromising hydrogen fuel source provision.
Abstract:
Described herein is a portable storage device that stores a hydrogen fuel source. The storage device includes a bladder that contains the hydrogen fuel source and conforms to the volume of the hydrogen fuel source. A housing provides mechanical protection for the bladder. The storage device also includes a connector that interfaces with a mating connector to permit transfer of the fuel source between the bladder and a device that includes the mating connector. The device may be a portable electronics device such as a laptop computer. Refillable hydrogen fuel source storage devices and systems are also described. Hot swappable fuel storage systems described herein allow a portable hydrogen fuel source storage device to be removed from a fuel processor or electronics device it provides the hydrogen fuel source to, without shutting down the receiving device or without compromising hydrogen fuel source provision.
Abstract:
Described herein is a portable storage device that stores a hydrogen fuel source. The storage device includes a bladder that contains the hydrogen fuel source and conforms to the volume of the hydrogen fuel source. A housing provides mechanical protection for the bladder. The storage device also includes a connector that interfaces with a mating connector to permit transfer of the fuel source between the bladder and a device that includes the mating connector. The device may be a portable electronics device such as a laptop computer. Refillable hydrogen fuel source storage devices and systems are also described. Hot swappable fuel storage systems described herein allow a portable hydrogen fuel source storage device to be removed from a fuel processor or electronics device it provides the hydrogen fuel source to, without shutting down the receiving device or without compromising hydrogen fuel source provision.
Abstract:
Apparatus has a body with a conduit defined therein. Body is mounted between, and connected to, a charging system containing pressurized fluid and a pressurized system. One apparatus has a retractable discharge tube inserted into a first end of the body. Once the body is connected to both the charging system and the pressurized system, a force is applied on the charging system toward the pressurized system. The force causes the charging system and the pressurized system to mate with the body urging the discharge tube to retract to release fluid into the conduit, and actuates the fitting to permit the fluid in the conduit to enter the pressurized system. Another apparatus has a manually deformable charging system and an adapter with a check valve to permit manual urging of fluid in the charging system through deformation of the charging system.
Abstract:
An apparatus for compressing a gas and its uses are disclosed. The apparatus comprises a fixed-volume container having a hollow and a moveable element subdividing said hollow into a first variable-volume portion and a second variable-volume portion, the second variable-volume portion having an opening for introducing therein a hydraulic and/or pneumatic fluid under pressure, for causing an increase in the volume of said second variable-portion by moving said moveable element, thereby, consequently, decreasing the volume of the first variable-volume portion and compressing a gas contained therein.
Abstract:
Apparatus has a body with a conduit defined therein. Body is mounted between, and connected to, a charging system containing pressurized fluid and a pressurized system. One apparatus has a retractable discharge tube inserted into a first end of the body. Once the body is connected to both the charging system and the pressurized system, a force is applied on the charging system toward the pressurized system. The force causes the charging system and the pressurized system to mate with the body urging the discharge tube to retract to release fluid into the conduit, and actuates the fitting to permit the fluid in the conduit to enter the pressurized system. Another apparatus has a manually deformable charging system and an adapter with a check valve to permit manual urging of fluid in the charging system through deformation of the charging system.
Abstract:
A flotation device for floating a watercraft is provided. The flotation device comprises a cover releasably secured to the watercraft. A first collapsible tubing is positioned between the cover and the watercraft for removing at least a portion of the cover. At least one inflatable flotation bladder is positioned between the cover and the watercraft wherein upon inflation of the first collapsible tubing, the first collapsible tubing releases at least a portion of the cover from the watercraft.
Abstract:
A pressure vessel assembly, and method of use, for storing a gas at an elevated pressure. The assembly includes a vessel body having a rigid wall with an inner surface defining a storage chamber and with an inlet allowing the gas to enter the storage chamber. The assembly includes a flexible liner positioned within the storage chamber to be in fluid communication with the inlet to receive any fluid entering the vessel body. The liner is formed of an elastic inner layer contacting the gas and a metallic outer surface. The inflated, unrestrained liner volume is generally at least as large as the chamber volume and more typically, slightly larger. Stored gas contacts the inner surface of the liner and expands the liner from a smaller deflated volume until the outer surface of the liner contacts the wall of the pressure vessel.
Abstract:
A receiving portion (11) having a pressure receiving-surface (11F) is provided in the through hole (10) of a container body (1), wherein the pressure-receiving surface has a tapered pressure-receiving surface (11A) and an outer receiving-pressure-regulating R(rounded) surface (11B) continuous to the forward end of the tapered pressure-receiving surface (11A). A supply/discharge tube (13) being inserted into the through hole is provided with a flange portion (14) having a pressurizing surface (14F) which is provided with a tapered pressurizing surface (14A) coming into face-contact with the tapered pressure-receiving surface.