Abstract:
A cable drive assembly for opening and closing a sliding vehicle door has first and second drums that are drivingly connected to each other via a tension spring that biases the drums in opposite directions. The drums include a catch that holds the first and second drums in a cocked condition where the spring is tensioned to provide slack in a closed loop cable to facilitate inserting a traveler attached to the cable into a track. The cocked drums are manually rotated in a drum housing in one direction to move the traveler and insert it into the track. After the traveler is inserted, the cocked drums are manually rotated in the opposite direction. This releases the catch so that the tensioned spring takes up the slack in the closed loop cable.
Abstract:
The present powered sliding device includes a wire drum (16) connected to a vehicle sliding door (11) through wire cables (18, 19), a motor (14) for rotating the wire drum, a clutch mechanism (25) provided between the motor and the wire drum, a first rotational member (85) rotated integrally with the wire drum, first detection means (86) for detecting the rotation of the first rotational member, and a housing (74). The housing includes a first space (76) accommodating the wired drum and communicating with the outside of the housing through the wire cables and a second space accommodating the first rotational member and the first detection means, and a housing body (73) provided between the first space and the second space for zoning the first space and the second space.
Abstract:
An opening and closing control system for an opening-closing member comprises an opening and closing mechanism for opening and closing the opening-closing member, an actuator for operating the opening and closing mechanism, an electromagnetic clutch for controlling a torque transmission by connecting and disconnecting the actuator and the mechanism, an opening and closing angle detecting means for detecting an opening and a closing angle of the opening-closing member relative to the vehicle, and a control means for controlling an electric power supplied to the electromagnetic clutch based on a detected result from the opening and closing angle detecting means and controlling an electric power supplied to the actuator, in which a supporting force required for supporting the opening-closing member is increased, and the control means for decreasing the electric power supplied to the electromagnetic clutch in accordance the opening-closing operation from an intermediate position to an opened position or a closed position.
Abstract:
A modular drive assembly for a sliding door, comprising: a guide track having a hinge slidably received therein; a pair of pulleys disposed on either end of the guide track; a pair of cables each having an end that is secured to the hinge and the other end is secured to a cable drum of a motor drive unit mounted to the guide track, the motor drive unit being configured to rotate the cable drum, wherein the cable drum is also capable of freely rotating within the motor drive unit when the motor drive unit is not rotating the cable drum, wherein rotation of the cable drum causes the hinge to move in the guide track as one of the cables wraps onto the cable drum while the other one of the cables wraps off of the cable drum.
Abstract:
A power drive assembly moves a liftgate (12) of a motor vehicle (10) between its open and closed positions. The motor vehicle (10) defines an opening and the liftgate (12) closes the opening when the liftgate (12) is in its closed position. The power drive assembly (22) includes a base (24) that is fixedly secured to the motor vehicle (10) at a position in spaced relation to the opening. A drive mechanism (38) is fixedly secured to the guide. The drive mechanism (38) converts electrical energy into a linear force. The power drive assembly (22) includes a translation linkage (58) connected to the drive mechanism (38) for receiving the linear force and translating it into a nonlinear force to move the liftgate (12) between the open position and the closed position. A nut (52), secured to the translation linkage (58), moves the translation linkage (58) as it travels along a lead screw (50) that is rotated by a motor (40).
Abstract:
A power drive mechanism (10) for a motor vehicle liftgate includes a linking arm (18) pivotally connected with the liftgate, a crank arm (12) drivable for pivotal movement and connected with the linking arm (18), and a gear train (20) operatively engaging the crank arm (12). A drive motor (34) is operatively connected with the crank arm (12) through the gear train (20) to provide power assisted opening and closing of the liftgate. The gear train (20) is disengagable from the drive motor (34) to permit manual opening and closing of the liftgate without backdriving the drive motor (34). An actuator (74) is operatively connected with the gear train (20) to move the gear train into and out of engagement with the drive motor. A holding linkage (60, 62) is operatively associated with the gear train (20) to maintain the gear train (20) in engagement during power assisted opening and closing of the liftgate.
Abstract:
A cable drive unit for opening and closing a sliding door on a vehicle (not shown) has a cup-shaped front drum having a helical front cable groove and a rear cup-shaped drum having a helical rear cable groove. The front drum is rotated about a longitudinal axis in a first direction to open the sliding door. The rear drum is partially nested in the front drum and rotated about the longitudinal axis in an opposite direction to close the sliding door. The front drum and the rear drum are drivingly connected to each other via a tension spring that biases the front drum and the rear drum in opposite directions when in tension. The front and rear drums are rotated by a concentric clutch that is nested in the rear drum. The clutch includes a drive member that is drivingly connected to the front drum via a first lost motion connection and drivingly connected to the rear drum via a second lost motion connection. The first drum has an arcuate slot forming part of the first lost motion connection, the rear drum has an arcuate slot forming part of the second lost motion connection, and the drive member has a tab that projects through both arcuate slots to form part of the first lost motion connection and part of the second lost motion connection.
Abstract:
The invention relates to a device for automatically actuating a vehicle door (1), in particular a side door or a tailgate of the motor vehicle. Said device comprises a control device (12) and a drive (4;4null) that consists of a motor (5) with a gearing (6) connected downstream and at least one transmission element (8;20) located between the gearing (6) and the vehicle door (1). The aim of the invention is to facilitate the manual actuation of an automatically actuated vehicle door (1) that is in an open position. To achieve this, a load sensor (10) is mounted on the drive (4). When a predetermined load on the open vehicle door (1) has been reached, said sensor generates a control signal, which is fed to the control device (12) for activating the motor (5), or for decoupling a coupling (18) that is located between the gearing (6) and the transmission element (8;20), the load on the open vehicle door (1) being produced e.g. by a corresponding manual pressure on said vehicle door (1).
Abstract:
A rack includes a closed position teeth portion meshed with a teeth portion of an output gear when the rack is disposed at a closed position corresponding to a closed position of an opening and closing member and an opened position teeth portion meshed with the teeth portion of the output gear when the rack is disposed at an opened position corresponding to an opened position of the opening and closing member and a clearance between faces of teeth of the closed position teeth portion and the teeth portion of the output gear is made larger than a clearance between faces of teeth of the opened position teeth portion and the teeth portion of the output gear.
Abstract:
The invention relates to a method for the automatic operation of a vehicle door (1), in particular a side door, or a rear hatch of a motor vehicle, from a first to a second position, by means of a drive (5; 26), connected to a controller (6), which acts on the vehicle door (1), by means of at last one transfer element (12; 30). The invention further relates to a device for carrying out said method. According to the invention, an automatically operated vehicle door (1) in the first position thereof, may be simply swung into the second position thereof at the same speed, even with differing street inclinations where the vehicle is standing, whereby, after activating the drive (5), the speed of the relevant vehicle door (1) is measured within a given angular range and compared with a set value curve. So long as the measured actual value for speed of the vehicle differs from the given set value curve, the speed of the door is changed until the speed as given by the set value curve is achieved.