Abstract:
The invention relates to a radiation sensor device comprising a housing and a plurality of radiation sensor modules secured to the housing. Each radiation sensor module comprises a radiation sensor arranged to detect radiation incident on the radiation source module. Preferably, each radiation sensor module contains an entire so-called optical train to allow for calibration of the detector (e.g., photodiodes, photoresistors and the like) without disassembling all the components of the module.
Abstract:
Disclosed is a method for correcting the temperature sensitivity of the amount of light L emitted by a light emitting diode (LED) and measured in a light detector, said LED being operated in a pulsed mode with an essentially constant pulse duration tP. According to the inventive method, a predetermined parameter X that has a predetermined ratio to the temperature T of the LED is used while a corrective factor K is determined from said parameter X, preferably using a calibration table, most preferably a closed, predetermined function, with the aid of which the measured emitted amount of light L is corrected by the temperature-dependent variations of the emitted amount of light. The parameter X is determined from at least two output signals of the LED which are correlated in a predetermined manner.
Abstract:
A system (10) provides white light having a selectable spectral characteristic (e.g. a selectable color temperature) using an optical integrating cavity (11) to combine energy of different wavelengths from different sources with white light. The cavity has a diffusively reflective interior surface and an aperture (17) for allowing emission of combined light. Control of the intensity of emission of the sources sets the amount of primary color light of each wavelength added to the substantially white input light output and thus determines a spectral characteristic of the white light output through the aperture. A variety of different elements may optically process the combined light output, such a deflector, a variable iris, and a lens a variable focusing lenses system, a collimator, a holographic diffuser and combinations thereof.
Abstract:
It comprises two systems mechanically supported by a mobile bar (3). The first system is an indirect measurement system and consists of a Lambertian target (1) diffusely reflecting the incident radiation thereon. A CCD camera (10) records in matrix form of illumination levels the thermal radiation reflected by the Lambertian target (1) when it is stopped in the area object of study. The second system is a direct measurement system and consists of a set of thermopile-type fast response calorimeters assembled in a calorimeter bar (2), without cooling by water and located adjacent to the Lambertian target (1). When these calorimeters pass in front of the area to be studied, they collect precise measurements of the incident power density thereon, without needing to stop. The incident power measurements obtained with both systems can thus be compared, improving the reliability of the measurement.
Abstract:
A validatable method for determining a photochemically effective dose for inactivating pathogens in a fluid sample is described herein. In particular, the instant invention covers methods for determining a photochemically effective doses sufficient to inactivate pathogens in a biological sample while leaving biologically active substances of interest unaffected. A batch irradiation reactor effective for inactivating pathogens in biological samples is also described.
Abstract:
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Durchführung des Verfahrens zur Qualitätskontrolle eines Photosensors 21, insbesondere eines Photodiodenarrays, dessen Ausgangssignal von der Intensität eines mit elektromagnetischen Wellen gebildeten Eingangssignals abhängt. Der zu testende Photosensor 21 wird mit die Eingangssignale ausbildenden Stimuliersignalen unter Variation der Stimuliersignalintensität der Stimuliersignale beaufschlagt. Dabei werden die zugehörigen Ausgangssignale des zu testenden Photosensors 21 wird gemessen und zu Auswertungszwecken erfaßt. Der Photosensor 21 wird vorzugsweise mit wenigstens zwei unabhängig voneinander steuerbaren, sich überlagernden individuellen Stimuliersignalen 41, 42, 43, 44 individueller Stimuliersignalintensität beaufschlagt. Die Einstellung der unterschiedlichen Stimuliersignalintensität der individuellen Stimuliersignale 41, 42, 43, 44 erfolgt mit Hilfe einer mit der Stimuliersignalquelle 31, 32, 33, 34 gekoppelten Kontrolleinheit 55 und die Messung und Erfassung der Ausgangssignale des Photosensors erfolgt mit Hilfe einer Meßdatenerfassungseinheit 65.
Abstract:
A light source for examining leak detection sites in heating, ventilating, and air conditioning systems using a fluorescent dye is described. The light source can include a parabolic reflector (6) or a low voltage lamp (10).
Abstract:
Es ist eine tragbare Miniatur-Spektralsonde für die Messung spektrometrischer Daten einer Meßprobe bekannt, mit einem Gehäuse, das mit einem Austrittsfenster für das von einer Lichtquelle emittierte Licht versehen ist, und in dem die Lichtquelle für das Beleuchten der Meßprobe, ein Detektor für die Erfassung und Umsetzung optischer Signale in elektrische Signale, eine Abbildungsoptik zur Abbildung der Lichtquelle auf die Meßprobe und auf den Detektor, und eine Stromversorgungseinheit für Lichtquelle und Detektor. Um eine derartige tragbare Miniatur-Spektralsonde mit erweiterten Einsatzmöglichkeiten bereitzustellen, wird erfindungsgemäß vorgeschlagen, daß die Lichtquelle eine Miniatur-UV-Lampe umfaßt.
Abstract:
A source of illumination of constant color temperature and intensity including a lamp 41 the color temperature of the light from which is dependent on the power applied to the lamp 41. There is a device 154 for measuring the intensity of portions of the spectrum of the light and for providing signals indicative of those intensities. Means 174, 45 responsive to the signals adjust the power to achieve the selected color temperature. A light modulator 48 adjusts the intensity without affecting color temperature. There is a spherical mirror 46 centered on the lamp 41 and the modulator 48 is located between the lamp 41 and the mirror 46 and controls the brightness of the image of the lamp 41 formed on the lamp 41 by the spherical mirror 46.
Abstract:
Procédé pour réguler une source de rayonnement qui a été mise en oeuvre à l'aide de diodes électroluminescentes ou LED, la plage de longueurs d'onde désirée étant séparée du rayonnement produit par lesdites diodes, dont l'intensité est régulée ou maintenue constante. La source de rayonnement est mise en oeuvre au moyen d'une rangée de LED (2) formée de puces semi-conductrices, ou d'éléments à LED, (21, 22, 23,..., 26), du rayonnement desquels est séparée une plage de longueurs d'onde (DELTAlambda1, DELTAlambda2,...) qui est fonction de l'emplacement de l'élément à LED dans lesdits réseaux, un moyen optique dispersant le rayonnement pour donner un spectre. L'intensité du rayonnement dans cette plage de longueurs d'onde, ou du rayonnement de sortie, est régulée ou maintenue constante par l'observation de ladite intensité et la régulation, grâce à elle, du courant traversant l'élément à LED respectif. Les plages de longueurs d'onde du rayonnement de sortie sont sélectionnées électriquement par activation d'un élément à LED approprié (21, 22, 23,..., 26) dans la rangée de LED (2).