Abstract:
A method is described for assessing at least one characteristic of a fluid held in a container that utilizes visible—near infrared (VIS-NIR) spectroscopy in combination with chemometrics. A method is also provided for calibrating VIS-NIR analyser(s) operating in transflectance mode for one or more characteristics of a fluid.
Abstract:
A visible/near-infrared spectrometry and its device for determining the components of a sample and the characteristics of the components of the sample by using visible light and/or near-infrared light in the wavelength range from 400 nm to 2500 nm. This spectrometry and device enable measurement that has been conventionally difficult, including high-accuracy determination of many components, detection of components present in ultra-low concentrations, and real-time determination of component characteristics, including determination of the structure or function of bio-macromolecules and their variations. The spectrum of a sample is measured while exposing the sample to water-activating perturbations (WAP), thereby causing the response spectrum to change, and by detecting transitions of the response spectrum. With this, by conducting spectrum analysis and/or multivariate analysis, the components of the sample and/or the characteristics of the components can be determined.
Abstract:
A system for performing spectral microanalysis delivers analysis results during the course of data collection. As spectra are collected from pixels on a specimen, the system periodically analyzes the spectra to statistically derive underlying spectra representing proposed specimen components, wherein the derived spectra combine in varying proportions to result (at least approximately) in the measured spectra at each pixel. Those pixels having the same dominant proposed component, and/or which contain at least approximately the same proportions of the proposed components, may then have their measured spectra combined (i.e., added or averaged). These spectra may then be cross-referenced via reference libraries to identify the components actually present. During the foregoing analysis, the measured spectra are preferably condensed, as by reducing the number of energy channels/intervals making up the measured spectra and/or by combining the measured spectra of adjacent pixels, to reduce the size of the data cube and expedite analysis results.
Abstract:
A process for measuring the NIR spectrum of a sample using a demountable NIR transmission cell of pathlength 2.5 mm or less, said process comprising: (a) measuring the etalon fringes that arise when NIR light passes through the NIR cell in the absence of a liquid sample, (b) using this to calculate the pathlength of the NIR cell (c) introducing the sample to be analyzed in to the NIR cell, and (d) measuring the NIR spectrum of the sample.
Abstract:
The present invention generally provides systems and methods for detection of agents of interest in a bulk quantity of matter, which also contains clutter and other constituents that typically interfere with the detection of one or more agents of interest. A detection system of the invention generally contains a collection subsystem for obtaining a bulk sample, an interrogation subsystem for generating one or more analytical signals representative of the composition of the bulk sample, and an analytical subsystem according to the teachings of the invention that implements the methods and algorithms of the invention for analyzing the sample analytical signals to determine whether one or more agents of interest are present, e.g., at quantities above a certain threshold, in the bulk sample.
Abstract:
A method is proposed for detecting at least one chemical compound V contained in a medium (312). The method comprises a verification step (420) which is used to determine whether V is contained in the medium (312). The method furthermore comprises an analysis step (424) in which a concentration c of the at least one chemical compound V is determined.The verification step comprises the following substeps: (a1) the medium (312) is exposed to a first analysis radiation (316) of a variable wavelength λ, the wavelength λ assuming at least two different values; (a2) at least one spectral response function A(λ) is generated with the aid of the radiation (324) absorbed and/or emitted and/or reflected and/or scattered by the medium (312) in response to the first analysis radiation (316); (a3) at least one spectral correlation function K(δλ) is formed by spectral comparison of the at least one spectral response function A(λ) with at least one pattern function R(λ+δλ), the at least one pattern function R(λ) representing a spectral measurement function of a medium (312) containing the chemical compound V and δλ being a coordinate shift; (a4) the at least one spectral correlation function K(δλ) is examined in a pattern recognition step (418), and a conclusion is made as to whether the at least one chemical compound V is contained in the medium (312); The analysis step (424) comprises the following substeps: (b1) the medium (312) is exposed to at least one second analysis radiation (318) having at least one excitation wavelength λEX; (b2) at least one spectral analysis function B(λEX,λRES) is generated with the aid of the radiation (326) of the response wavelength λRES absorbed and/or emitted and/or reflected and/or scattered by the medium (312) in response to the second analysis radiation (318) of the wavelength λEX and the concentration c is deduced therefrom.
Abstract:
Methods are provided for predicting warp of a wood product given its differential characteristics, such as, for example, curvature. The methods may involve measuring at least one original warp profile for each of one or more first wood products; measuring one or more inputs on the one or more first wood products; converting the warp profile, for each of the one or more first wood products, into a differential characteristic profile; developing a prediction algorithm based on the one or more inputs and the differential characteristic profile; measuring one or more inputs of the given wood product; inputting the one or more inputs of the given wood product into the prediction algorithm; and determining a differential characteristic profile for the given wood product based on the prediction algorithm.
Abstract:
The optical analysis system (20) for determining an amplitude of a principal component of an optical signal comprises a multivariate optical element (10) for reflecting the optical signal and thereby weighing the optical signal by a spectral weighing function, and a detector (9, 9P, 9N) for detecting the weighed optical signal. The optical analysis system (20) may further comprise a dispersive element (2) for spectrally dispersing the optical signal, the multivariate optical element being arranged to receive the dispersed optical signal. The blood analysis system (40) comprises the optical analysis system (20) according to the invention.
Abstract:
This invention describes a method for determining the content of conjugated diolefins by means of the measurement of the MAV of a sample of catalytic cracking gasoline or thermal cracking gasoline, from its NIR (near-infrared) spectrum, and the application of said method for monitoring a unit for selective hydrogenation of the cracking gasolines.
Abstract:
A method for identifying brominated flame retardants in a polymer sample. An infrared spectrometry scan of the polymer sample is obtained. Using a first set of parameters, the obtained IR scan is compared to a first database, and a first hit score is calculated. Based on the results of the first hit score, a second database is selected from among a number of databases, and the obtained infrared spectrometry scan is compared to the various scans contained in the selected database using a parameter set that corresponds to the selected database, and a second hit score is calculated. Using the second hit score, another set of parameters is selected, and the obtained infrared spectrometry scan is compared to the various scans contained in the selected third database using this additional parameter set, and a third hit score is calculated. Based on the second and third hit scores, the identity of the brominated flame retardant in the polymer sample is determined with a high degree of accuracy.