Abstract:
A device for manually and/or electromotively adjusting or securing a first vehicle part and a second vehicle part relative to each other is provided. The device comprising an adjustment part which has a joint for pivotable arrangement on the first vehicle part, wherein the adjustment part is to be arranged on the first vehicle part in such a manner that, when the vehicle parts are adjusted relative to each other, the adjustment part moves relative to the second vehicle part, an output element which is to be arranged on the second vehicle part, is operatively connected to the adjustment part and is drivable in order to move the adjustment part relative to the second vehicle part, and an electromotive drive device for driving the output element, wherein the drive device has a drive motor and a transmission coupling the drive motor to the output element.
Abstract:
A sensor apparatus for a movable barrier system having a rotatable drum and an elongate member that winds up on and pays out from an external surface of the rotatable drum. The sensor apparatus includes a base portion, a sensing portion, and a controller. The sensing portion senses a first spaced apart proximity of the elongate member relative to the sensing portion and a second spaced apart proximity of the elongate member relative to the sensing portion. The controller detects a change in the proximity of the elongate member relative to the sensing portion without the elongate member contacting the sensing portion.
Abstract:
A cable lift mechanism for a multi panel, overhead garage door includes a drum having a spiral groove comprised of two adjacent sections that are generally coaxial with the longitudinal axis of the cable drum. The groove or grooves in a first section adjacent the attachment end of the cable to the drum have a lesser radius than the remaining grooves of the second section of the drum which have substantially equal radii of greater diameter than the first section radii. As a consequence, initial torque associated with lifting of a garage door is increased to lift a heavier upper or top panel or panels of a multi-panel garage door.
Abstract:
A vehicle includes sidewalls, a tailgate located proximate to rear ends of the sidewalls, and a tailgate energy management system. The tailgate energy management system includes a governor coupled to one of the sidewalls and to the tailgate. The governor selectively applies a governing force to the tailgate to reduce an opening speed of the tailgate. The tailgate energy management system also includes a speed sensor sensing an opening speed of the tailgate and an electronic control unit electronically coupled to the governor and the speed sensor. The electronic control unit includes a processor and memory storing an instruction set. The electronic control unit receives a speed signal indicative of the opening speed of the tailgate and the processor executes the instruction set to cause the electronic control unit to transmit a control signal to the governor to slow the opening speed of the tailgate based on the speed signal.
Abstract:
A sliding door drive assembly is provided for a vehicle. The assembly includes at least one grooveless drum. The drum has a cable wrap surface and is rotatable to wind cable thereon and unwind cable therefrom. A guide is positioned to be aligned generally with a first axial edge of the cable wrap surface. As cable is wrapped on the drum, the angle of the cable (due to the position of the guide) biases the cable towards the first axial edge, so that successive wraps of cable are snuggly positioned adjacent prior wraps. In another aspect, a cable drum includes a ramp at a second axial edge of the cable wrap surface, which guides the cable radially outwardly to start a second layer of wraps of cable on the first layer of wraps. In another aspect, an absolute position sensor is provided for a powered sliding door.
Abstract:
A vehicle includes sidewalls, a tailgate located proximate to rear ends of the sidewalls, and a tailgate energy management system. The tailgate energy management system includes a governor coupled to one of the sidewalls and to the tailgate. The governor selectively applies a governing force to the tailgate to reduce an opening speed of the tailgate. The tailgate energy management system also includes a speed sensor sensing an opening speed of the tailgate and an electronic control unit electronically coupled to the governor and the speed sensor. The electronic control unit includes a processor and memory storing an instruction set. The electronic control unit receives a speed signal indicative of the opening speed of the tailgate and the processor executes the instruction set to cause the electronic control unit to transmit a control signal to the governor to slow the opening speed of the tailgate based on the speed signal.
Abstract:
A vehicle door opening/closing apparatus includes a drum unit disposed on the side of one face of an inner panel constituting a vehicle door and including a take-up drum capable of taking up a length of cable disposed between the vehicle and the vehicle door, a drive unit disposed on the side of the other face of the inner panel and configured to drive the take-up drum, a power transmission mechanism configured for transmitting a rotational drive force of the drive unit to the take-up drum, with allowing engagement and disengagement between take-up drum and the drive unit, and a coupling mechanism for coupling the drive unit to the drum unit, with the inner panel being clamped there between.
Abstract:
A cable drum assembly for a power drive assembly for a vehicle sliding door, the cable drum assembly comprising: a first drum configured for use as a front drum or a rear drum of the cable drum assembly, the first drum having a first plurality of locating holes; and a second drum configured for use as a front drum or a rear drum of the cable drum assembly, the second drum having a second plurality of locating holes, the first plurality of locating holes have a first pair of locating holes configured to align with a first pair of location holes of the second plurality of locating holes when the first drum is used as a rear drum of the drum assembly and the second drum is used as a front drum of the drum assembly and the second plurality of locating holes have a second pair of locating holes configured to align with a second pair of location holes of the first plurality of locating holes when the first drum is used as a front drum of the drum assembly and the second drum is used as a rear drum of the drum assembly.
Abstract:
A drum which receives a cable of a counterbalancing system of a cable-operated door, the cable having an extremity provided with a stopper. The drum includes a substantially cylindrical body, a cable entry groove and a securing slot. The drum further includes an embossment configured about the drum and its components in order to prevent that the cable from coming off its normal position in the drum when there is a “slack” condition in the cable.
Abstract:
A drive unit is arranged in a side of one side surface of a panel constituting a part of a door, and a drum case of a driven unit is fixed to a side of another side surface of the panel. The side of another side surface of the panel is provided with a plurality of engagement portions, which are engaged respectively with a plurality of to be engaged portions provided in the drum case, thereby positioning the drum case.