Abstract:
A method of determining a modified spectral content of a light emitting diode (LED) light engine includes separating spectral data from the LED light engine into at least two spectral component bands, calculating respective efficacies for each of the at least two spectral components, simulating a first LED spectral component for a predetermined peak position and intensity, modifying spectral data from an existing LED to match a predetermined peak wavelength, applying factorial design-of-experiment techniques to the simulated first LED spectral component and the modified spectral data to obtain a selection of spectra, and selecting a spectrum from the results of the applying step, wherein the selected spectrum includes characteristics of the modified spectral content. The method includes the step of producing a LED light engine/electronic driver combination having the selected spectrum. A non-transitory medium having computer executable instructions is disclosed.
Abstract:
An LED classification device (21) classifies LEDs, the LEDs each including a combination of an LED element that emits a primary light and a phosphor that, upon excitation by the primary light, emits a secondary light having a longer wavelength than the primary light, the LEDs each emitting a combined light of the primary light and the secondary light, those ones of the LEDs whose primary lights having their chromaticities falling within a predetermined chromaticity range being classified as LEDs for use in a backlight of a liquid crystal display apparatus. A coefficient calculating section (26) and a corrected chromaticity calculating section (27) calculate, for all of the LEDs to be classified, correction values for the chromaticities as obtained on the assumption that the primary lights have traveled through a color filter of the liquid crystal display apparatus, and correct chromaticities by subtracting the correction values from chromaticities obtained for all of the LEDs to be classified, respectively. A chromaticity rank classification section (28) classifies the LEDs according to chromaticity rank on the basis of the corrected chromaticities.
Abstract:
A system and method of quantifying color and intensity of light sources including LEDs, HBLEDs (High Brightness LEDs), and other Solid State Lights (SSLs) using C-parameters to model a Spectral Power Distribution (SPD) to improve precision, accuracy, repeatability and usefulness of measurement of optical properties of wavelength and radiant flux in manufacturing of an object, designing products and processes that use the object, and describing/defining the object, is provided. In one embodiment, a method of characterizing a Solid State Light (SSL) source includes a SSL source under test (DUT), a Spectral Power Distribution (SPD) of light emission of the SSL source, a curve-fitting function, a set of configuration data comprising the order of the curve-fitting function, the number of nodes, wavelength boundary limits, saturation threshold, and noise floor threshold, a computing device for curve-fitting, node detection, iteration and program control and inputting and outputting data; and a set of C-Parameters, noise parameters, and confidence values.
Abstract:
The present invention refers to a method for providing a light assembly emitting light with a desired color temperature comprising the steps of providing a light source in a first step measuring the color temperature of the light source in a second step, comparing the measured color temperature with the desired color temperature in a third step and printing an optical compensation means for compensating differences between the measured color temperature and the desired color temperature in a fourth step, if the measured color temperature deviates from the desired color temperature.
Abstract:
Various embodiments may relate to a lighting device including at least two light sources, the light from which has different spectra and is combined to form useful light. For measuring the portions of the light from the individual light sources, part of the useful light, the measurement light, is branched off with the aid of a coupling-out element at the output of the lighting device and is fed to a measuring device.
Abstract:
An illuminated makeup mirror set includes: a mirror unit; a surface light source for illumination with adjustable color and adjustable brightness; a memory unit in which illumination conditions corresponding to a plurality of scenes are stored; a detection unit for detecting the color and brightness of ambient light at an installation position of the makeup mirror set; a selection unit for selecting one of the plurality of scenes according to an input operation; an acquisition unit for acquiring, from the memory unit, illumination conditions corresponding to the scene selected through the selection unit; and an adjustment unit for adjusting the color and brightness of the surface light source according to the color and brightness of the ambient light detected by the detection unit and the illumination conditions acquired by the acquisition unit.
Abstract:
An image processing device includes: a demosaicking unit which converts a bayer image from a camera sensor into red, green image and blue images; a first color space conversion unit which converts first camera RGB data into first display R′G′B′ data using a first color space conversion matrix; and a display unit which displays an image using the first display R′G′B′ data, where the first color space conversion matrix is calculated from a relationship in which the product of the first color space conversion matrix and a transpose of a first N×3 matrix is a transpose of a second N×3 matrix, where the first N×3 matrix represents camera RGB data of N number of colors, and the second N×3 matrix represents display R′G′B′ data of the N number of colors calculated by measuring the N number of colors displayed in the display unit using a spectrophotometer.
Abstract:
In the color imaging system, multiple rendering devices are provided at different nodes along a network. Each rendering device has a color measurement instrument for calibrating the color presented by the rendering device. A rendering device may represent a color display in which a member surrounds the outer periphery of the screen of the display and a color measuring instrument is coupled to the first member. The color measuring instrument includes a sensor spaced from the screen at an angle with respect to the screen for receiving light from an area of the screen. A rendering device may be a printer in which the measuring of color samples on a sheet rendered by the printer is provided by a sensor coupled to a transport mechanism which moves the sensor and sheet relative to each other, where the sensor provides light from the sample to a spectrograph. The color measuring instruments provide for non-contact measurements of color samples either displayed on a color display, or printed on a sheet, and are self-calibrating by the use of calibration references in the instrument.
Abstract:
A flash apparatus comprising at least two flash tubes and at least two energy storage units is presented, wherein each of said at least two energy storage units is being arranged to be configured to strictly correspond to one of the at least two flash tubes for a flash. The flash apparatus is configured to control the amount of energy provided by the at least two energy storage unit(s) to their corresponding flash tube and control the flash duration of the corresponding flash tube dependent of each other, respectively for each flash tube, so as to obtain substantially the same colour temperature from each flash tube for a flash. A method and a computer program product for use in the flash apparatus are also presented.
Abstract:
A system and method for determining a state of a traffic signal. In one embodiment, a traffic signal state detector includes a lens, a color sensor, and a processor. The color sensor is configured to identify a plurality of colors of light directed to the color sensor by the lens, and a field of view of the color sensor is restricted based on dimensions of a traffic signal. The processor is coupled to the color sensor. The processor is configured to determine a color of light emitted by the traffic signal based on the colors of light identified by the color sensor.