Abstract:
A light deflector is provided including a mirror unit having a light reflection plane, a movable frame to support the mirror unit, a support frame disposed to surround the movable frame, a pair of serpentine beams each disposed between the movable frame and the support frame on both sides of the movable frame to form a turning shape, each of the serpentine beams having one end attached to the support frame, and another end attached to the movable frame, and a vibration damper provided on a portion that moves due to deformation of the serpentine beams caused by application of voltage being transferred.
Abstract:
Micromechanical devices include actively deflectable elements. The activation is performed by a layer stack which causes the deflection responsive to attractive forces acting upon the layers of the layer stack.
Abstract:
Imaging systems may include an image sensor and a microelectromechanical systems array. The microelectromechanical systems array may be mounted over the image sensor. The system may include an infrared lens that focuses infrared light onto a first surface of the microelectromechanical systems array and a visible light source that illuminates an opposing second surface of the microelectromechanical systems array. The image sensor may capture images of the opposing second surface of the microelectromechanical systems array. The system may include processing circuitry that generates infrared images of a scene using the captured images of the microelectromechanical systems array. Microelectromechanical systems elements in the microelectromechanical systems array may change position or shape in response to infrared light that is absorbed by the microelectromechanical systems elements. Each microelectromechanical systems element may include infrared absorbing material on a metal layer. The system may include optical elements that focus visible light onto the image sensor.
Abstract:
An integrated MEMS device is provided. The integrated MEMS device comprises a circuit chip and a device chip. The circuit chip has a patterned first bonding layer disposed thereon, the bonding layer being composed of a conductive material/materials. The device chip has a first structural layer and a second structural layer, the first structural layer being connected to the second structural layer and the first bonding layer of the circuit chip, and being sandwiched between the second structural layer and the circuit chip. A plurality of hermetic spaces are enclosed by the first structural layer, the second structural layer, the first bonding layer and the circuit chip.
Abstract:
A micromechanical device with electrostatically caused deflection by a plate capacitor extending along and spaced apart from the neutral fiber of the deflectable element is improved with regard to its manufacturing complexity and/or with regard to its operating characteristics, such as, for example, maximum voltage applicable or deflectability, by using a continuous insulation layer between the distal and proximal electrodes of the plate capacitor, or else the proximal electrode is structured so as to have gaps at the segment boundaries where the distal electrode is mechanically fixed so as to be laterally spaced apart from the distal electrode. Both procedures avoid the problems of generating a roughness of the surface of the proximal electrode facing the distal electrode, as would otherwise be necessitated by etching an insulation layer for providing spacers between the distal and proximal electrodes at the segment boundaries.
Abstract:
An integrated MEMS device and its manufacturing method are provided. In the manufacturing method, the sacrificial layer is used to integrate the MEMS wafer and the circuit wafer. The advantage of the present invention comprises preventing films on the circuit wafer from being damaged during process. By the manufacturing method, a mechanically and thermally stable structure material, for example: monocrystalline silicon and polysilicon, can be used. The integrated MEMS device manufactured can also possess the merit of planar top-surface topography with high fill factor. The manufacturing method is especially suitable for manufacturing MEMS array device.
Abstract:
A nano-electromechanical system comprises piezoelectric vertically aligned BaTiO3 nanowire arrays for energy-harvesting applications, sensors, and other applications. The aligned piezoelectric nanowire arrays provide highly accurate nano-electromechanical system-based dynamic sensor with a wide operating bandwidth and unity coherence and energy harvesters at low frequencies. The growth of vertically aligned (B45-mm long) barium titanate nanowire arrays is realized through a hydrothermal synthesis.
Abstract:
A micro-electro-mechanical system device is disclosed. The micro-mechanical system device comprises a first silicon substrate comprising: a handle layer comprising a first surface and a second surface, the second surface comprises a cavity; an insulating layer deposited over the second surface of the handle layer; a device layer having a third surface bonded to the insulating layer and a fourth surface; a piezoelectric layer deposited over the fourth surface of the device layer; a metal conductivity layer disposed over the piezoelectric layer; a bond layer disposed over a portion of the metal conductivity layer; and a stand-off formed on the first silicon substrate; wherein the first silicon substrate is bonded to a second silicon substrate, comprising: a metal electrode configured to form an electrical connection between the metal conductivity layer formed on the first silicon substrate and the second silicon substrate.
Abstract:
An integrated MEMS device and its manufacturing method are provided. In the manufacturing method, the sacrificial layer is used to integrate the MEMS wafer and the circuit wafer. The advantage of the present invention comprises preventing films on the circuit wafer from being damaged during process. By the manufacturing method, a mechanically and thermally stable structure material, for example: monocrystalline silicon and polysilicon, can be used. The integrated MEMS device manufactured can also possess the merit of planar top-surface topography with high fill factor. The manufacturing method is especially suitable for manufacturing MEMS array device.
Abstract:
A MEMS device includes a substrate, one or more anchors formed on a first surface of the substrate, and a piezoelectric layer suspended over the first surface of the substrate by the one or more anchors. Notably, the piezoelectric layer is a bimorph including a first bimorph layer and a second bimorph layer. A first electrode may be provided on a first surface of the piezoelectric layer facing the first surface of the substrate, such that the first electrode is in contact with the first bimorph layer of the piezoelectric layer. A second electrode may be provided on a second surface of the piezoelectric layer opposite the substrate, such that the second electrode is in contact with the second bimorph layer of the piezoelectric layer. The second electrode may include a first conducting section and a second conducting section, which are inter-digitally dispersed on the second surface.