Abstract:
A damper apparatus is disclosed for damping movement between a first and a second element. The apparatus includes an elongate housing secured to the first element, the housing having a first and a second end. The housing defines a bore which extends between the ends of the housing. A rotor is connected to the second element, the rotor including a first and a second portion. The first portion of the rotor is rotatably disposed within the bore of the housing. A biasing device has a first and a second termination, the biasing device extending between the second portion of the rotor and the housing for rotationally biasing the rotor relative to the housing. A seal is disposed between the first and second portions of the rotor. The seal cooperates with the bore for sealing the bore relative to the second portion of the rotor such that in use of the apparatus, damping fluid sealed within the bore by the seal dampens rotational movement of the rotor relative to the bore when the rotor is rotationally biased. The arrangement is such that movement between the first and second elements is dampened.
Abstract:
The movement of a hinge, preferably for furniture, comprising a hinge arm or a fixed-body hinge section and a pivotable hinge section flexibly connected thereto, is damped by a rotation damper at least damped over part of the closure path to the closed position. In order that the hinge can be manufactured at reduced cost, the rotation damper is an axial damper whose axis forms a hinge axis of the hinge and whose cylinder is fixedly connected to the hinge section which is pivotably supported on the axis.
Abstract:
A damper includes a housing and a rotor. A portion of the rotor extends outwardly of the housing and has a gear rotatably disposed thereon. A coil spring encircles the portion of the rotor, and has an end segment secured to the gear. Rotation of the gear in one direction tightens the grip of the spring on the rotor, and rotation of the gear in the opposite direction loosens the grip of the spring on the rotor.
Abstract:
A damper unit includes a gear having a core member projecting at a shaft core portion thereof and rotatably housed in a case, a string wound around the core member, a rotary damper engaging the gear for damping a rotational force of the gear, and a spring. One end of the spring is fixed to the case and the other end thereof is fixed to the core member so that an elastic force is accumulated when the string is pulled out.
Abstract:
A damper includes a cylindrical housing; a rotor rotationally housed in the cylindrical housing; a biasing member for applying a biasing force to the rotor; viscous fluid filled in the cylindrical housing; and a spare winding setting device for setting the biasing force of the biasing member. When the rotor rotates, the rotation is damped by a shear resistance of the viscous fluid filled in the cylindrical housing. The damper may include an open position lock mechanism having a first engaging projection disposed on an inner circumferential surface of the cylindrical housing and a second engaging projection disposed on an outer circumferential surface of the rotor. The first and second engaging projections can engage or move over with each other.
Abstract:
A hinge for controlling a pivotal rate of movement. The hinge includes a first hinge part and a second hinge part that is pivotally mounted to the first hinge part. The first hinge part movable to and between open and closed positions relative to the second hinge part. A connector extends along an axis and the first and second hinge parts are pivotally mounted around the connector on the axis. A gap is defined between at least one of the first and second hinge parts and the connector. A damping fluid is located within the gap for controlling a relative rate of movement of the first and second hinge parts between the open and closed positions.
Abstract:
The invention relates to a device for damping the movement of movable furniture parts to their closed position. The invention provides for a housing which can be fastened to a fixed wall part or carcass part, in which housing a lever is pivotably held or a plunger is slidably guided, with said lever or plunger being pivoted or slid to its closing region by the movable furniture part, thus by way of at least two-stage gear means with a speed increasing ratio impinging on a rotation damper or on the piston of a damping cylinder.
Abstract:
A hinge for a cellular phone that has a cover and a base comprises an inner sleeve, an outer sleeve and a spring. The spring is mounted between the inner sleeve and the outer sleeve and provides a torsion force to open the cover. A layer of buffering gel is applied the outer surface of the inner sleeve between the inner sleeve and the outer sleeve to damp the opening rate of the cover so that the pivoting device can keep a wire between the cover and the base from breaking.
Abstract:
The invention relates to a damping device for movable furniture parts, for example for doors or drawers, comprising a piston or plunger which is slidably guided in a hollow body, e.g. a cylinder, with said piston or plunger being impinged upon by spring force into its pushed-out position. According to the invention, the hollow body comprises at least one section of a spiral-shaped stay of the internal screw thread, and/or the piston or plunger comprises at least one section of a spiral-shaped stay of the external screw thread. The stays of the screw threads are glidingly supported one on top of the other, or cams or journals of the hollow body or of the piston or plunger are supported on a screw-thread section of the other component. The pitch of the stays of the screw threads is greater than the pitch at which self-locking occurs.
Abstract:
Supplementary storage device for a refrigerator including an opening in a refrigerator door for making an inside of the refrigerator in communication with an outside of the refrigerator to put food into an inside of the refrigerator directly, a supplementary door on the refrigerator door for opening or closing the opening, and at least one damper for rotatably coupling the supplementary door to the refrigerator door, to damp a rotation force generated in opening or closing the supplementary door, thereby minimizing impact and noise.