Abstract:
An electric connector and a battery comprising the same may be provided. The electric connector (3) may comprise a core fixing part and an extension part (32) connected to the core fixing part. The core fixing part may include at least two hosting portions (31) each configured to hold an electrode tab of a winding core of a battery, respectively, and a connection portion (33) configured to connect the two adjacent hosting portions.
Abstract:
A carrier communication method and system based on charging-discharging of an electric vehicle and a carrier device are disclosed. The carrier communication method comprises: determining whether a carrier signal from a peripheral apparatus is detected at an interface harness and if yes, determining whether the carrier signal is correct, when the electric vehicle is powered on to start; when the electric vehicle detects the carrier signal and the carrier signal is correct, receiving the carrier signal via the interface harness; and performing a coupling and filtering on the carrier signal to convert the carrier signal into a standard carrier signal and demodulating the standard carrier signal into a digital signal to obtain information about the peripheral apparatus.
Abstract:
An oil pump is provided. The oil pump comprises a shell, a rotor mounting part disposed at an end of the shell, and a rotor mechanism disposed on the rotor mounting part. The shell has an inlet and an outlet and defines a low-pressure oil chamber and a high-pressure oil chamber therein. The high-pressure oil chamber and the low-pressure oil chamber are located at the same side of a periphery of the rotor mounting part. An engine cover comprising the oil pump and an engine comprising the engine cover are also provided.
Abstract:
A pixel array is provided. The pixel array comprises a plurality of two-dimensionally arranged 4*4 Bayer matrix units, in which the matrix unit comprises a plurality of pixels, any of a green filter, a red filter and a blue filter is disposed in one pixel, and one or more of the green filters are replaced by white color filters in the matrix units. A camera using the same and a color processing method based on the pixel array are also provided.
Abstract:
A die casting apparatus (100) for amorphous alloy and a method of die casting amorphous alloy may be provided. The die casting apparatus may comprise a stationary die (1) and a movable die (2); a sealed cabin (4) defining a sealing chamber (40); a protecting gas supplying device connected with the sealed cabin (4) for supplying the protecting gas into the sealing chamber (40); a melting device (5) for receiving and melting amorphous alloy; a feed sleeve (6) having a molten material inlet (60), with a plunger (7) positioned therein for injecting the molten amorphous alloy from the melting device (5) into a die chamber via the molten material inlet (60); a driving device (8) connected with the plunger (7) for driving the plunger (7) in the feed sleeve (6); and a gas purifying device (10) communicated with the sealed cabin (4) for purifying the gas from the sealed cabin (4).
Abstract:
An active discharging system for an electric vehicle and an electric vehicle including the same are provided. The active discharging system includes a power battery; a bus capacitor; a charge-discharge socket; a bidirectional DC/DC module; a driving control switch; a bidirectional DC/AC module; a motor control switch connected with the bidirectional DC/AC module and a motor; a charge-discharge control module connected with the bidirectional DC/AC module and the charge-discharge socket; and a controller module configured to control the driving control switch, the motor control switch and the charge-discharge control module according to a current operation mode of the active discharging system, to control the bus capacitor to continue charging the power battery after a charge is finished, and to control the bus capacitor to continue discharging after a discharge is finished until a voltage across the bus capacitor is less than a first predetermined value.
Abstract:
A wireless charging device (100) includes a shell (1), a heat conduction plate (2), a charging assembly (4) and a connecting assembly (5). The heat conduction plate (2) includes a first portion (201), a second portion (202) parallel with the first portion (201) and contacted with an inner surface of the shell (1), and a third portion (203) connecting a lower edge of the first portion (201) to a lower edge of the second portion (202). The charging assembly (4) is disposed between the first and second portions (201,202) and includes a circuit board, a chip (401) disposed on the circuit board and contacted with the first portion (201), a charging coil and an exciting unit. The connecting assembly (5) defines a first end electrically connected with the circuit board. A method for charging an apparatus with the wireless charging device (100) is also provided.
Abstract:
A distributed battery management device and a method thereof are provided. The method comprises: receiving, by a battery management control module, a first identification distribution request from a first data acquisition module; activating, by the battery management control module, the first data acquisition module for monitoring one or more batteries; and sending, by the battery management control module, a first identification message corresponding to the first identification distribution request, to the first data acquisition module. The device comprises: a battery management control module; and a first data acquisition module communicatively coupled with the battery management control module, wherein the battery management control module and the first data acquisition module are configured to communicate with each other to identify the data acquisition module.
Abstract:
A quasi-resonant device for a switching power, a quasi-resonant system for a switching power, and a method for a quasi-resonant control of a switching power are provided. The quasi-resonant device includes: a degaussing time sampling module, configured to sample a degaussing time Tds of a secondary coil of the transformer according to a feedback signal output by the switching power after the switching tube is turned off; a valley sampling module, configured to sample a resonant valley signal of the quasi-resonant module according to the feedback signal; a time producing module, configured to produce a time T with a predetermined ratio D by processing the degaussing time Tds; and a logic processing module, configured to obtain a first valley signal after the time T, and the first valley signal works as a switching signal T′ to turn on the switching tube.
Abstract:
A discharging apparatus for an electric vehicle and an electric vehicle are provided. The discharging apparatus comprises: an AC charging interface; a charging connection device, configured to transmit an AC output from the AC charging interface to another electric vehicle; an instrument, configured to send a discharging preparation instruction; a controller, configured to detect whether the charging connection device is connected with the AC charging interface, and if yes, to emit a PWM wave and to switch to an external discharging mode; a battery manager, configured to control an external discharging circuit in a high-voltage distribution box of the electric vehicle to be connected after the controller switches to the external discharging mode; a power battery, configured to provide a DC via the external discharging circuit.