Abstract:
A retrofit conversion kit for facilitating the conversion of a door operating apparatus conventionally mounted above the door, to a position mounted and anchored underground for operating a swinging door therefrom. The conversion to an anchored underground position is facilitated by incorporating positional adjustment mechanisms covering any or all possible adjustment dimensions.
Abstract:
An actuating device is provided for moving a closure panel between an open position spaced apart from a vehicle body and a closed position abutting the vehicle body to close an access opening thereof. The actuating device includes a telescopic arm having a first member coupled to one of the closure panel and the vehicle body and a second member coupled to the other of the closure panel and the vehicle body. The first and second members are slidable relative to one another to move the actuating device between a retracted position corresponding with the closed position and an extended position corresponding with the open position. A screw is rotatable relative to the first member. The screw includes a cavity formed therewithin. A nut is secured to the second member and threadingly engages the screw such that rotation of the screw moves the second member towards and away from the first member to move the actuating device between the respective retracted and extended positions. A gas spring is at least partially disposed within the cavity of the screw for urging the actuating device into the extended position to move the closure panel into the open position.
Abstract:
A power sliding back window assembly for a motor vehicle is provided. The assembly can include a window casing with a first window pane and a second window pane fixedly attached thereto. Also included can be a generally U-shaped guide rail that has a first end and an oppositely disposed second end. A third window pane having a portion or edge fixedly attached to a glass carrier can also be included. A first cap can be attached to and located at least partially within the first end of the generally U-shaped guide rail and a second cap can be attached to and located at least partially within the second end of the generally U-shaped guide rail.
Abstract:
A slide rail structure for a window blind includes at least one extensible rail set, at least one pulley set, and a plurality of top brackets. The extensible rail set is provided with at least two slide rails which are loosely extended with respect to each other and are assembled together, and a side of each slide rail is provided with an open slot. The pulley set is loosely assembled in the slide rail of extensible rail set, and is extended out of the open slot at one side of each slide rail. A side of each top bracket is formed with an arc-shape locking part for sheathing the slide rail of extensible rail set, and a top of each top bracket is provided with a hole for locking and positioning. The slide rail structure can be easily and quickly assembled, can be rigidly positioned and can slide smoothly.
Abstract:
A modular rail system for suspending sliding doors, including at least one rail profile having a top side arranged for being fixed against a horizontal wall part, a bottom side having a rail portion for carrying suspension wheels of a sliding door, a first lateral side arranged for being fixed against a vertical wall part, and an open second lateral side. On both opposite lateral sides the rail profile includes recesses having substantially the same shape for engaging complementary spacer elements. A sliding door system including a rail system, at least one sliding door with suspension wheels and at least one repositionable braking/stopping element having a stop for defining an extreme position of the sliding door and a releasable fixing element for fixing the braking/stopping element in the rail system. The fixing element is spaced a predetermined distance from the stop, chosen for maintaining user accessibility to the fixing element while the stop is located in a user inaccessible position.
Abstract:
A motorized door opener for a vehicle (such as a military or security vehicle), featuring a sensor system that determines door position to prevent door damage while the opener is in operation. The opener features an offset gear system that effectively changes the door's rotation point. Mechanical advantage is gained by using a lengthened lever arm with the gear system, providing increased leverage and allowing the motor to provide enough force to open and close a heavily armored door. The opener can use existing door hinges, and can be provided so as not to protrude into the door space, in order to facilitate passenger and equipment entry/exit through the doors. A safety release mechanism is included in some embodiments, allowing the door to be manually opened or closed.
Abstract:
A safety release mechanism for use with a ball screw type linear motor, featuring a lock lever that can be manually engaged or disengaged. Engaging the lock lever rigidly fixes a telescoping arm, allowing the motor to retract or extend the arm into a cover tube. Disengaging the lock lever allows the telescoping arm to rotate freely in the cover tube. One embodiment of the safety release mechanism is used with a motorized door assist mechanism, however, the release mechanism has many applications beyond a door opener, and can be used in any application requiring a linear motor with a telescoping arm, where in order for the motor to extend or retract the arm, one end of the arm must be fixedly held in place.
Abstract:
A home appliance includes a carcass, a door joined to the carcass with a hinge for closure of an interior compartment of the carcass, a superimposed decor panel spaced from the door by a gap, a first fitting part mounted in the gap on the decor panel, and a deformable cover piece extending from a side wall of the carcass adjacent to the hinge into the gap and having an extension which reaches through a passage between the first fitting part and the decor panel from a hinge-side edge of the decor panel and abuts a side of the first fitting part facing away from the hinge-side edge of the decor panel.
Abstract:
A hinge structure for a vehicle open/close body, in which a long hinge member supporting the open/close body is rotatably disposed in an opening portion of a vehicle body and the hinge member rotates according to an opening and closing motion of the open/close body, wherein a cover member for covering the hinge member is disposed in the hinge member; and wherein a shape of an outer periphery surface of the cover member facing a corner portion of the opening portion is formed in a shape following a shape of the corner portion.
Abstract:
A sliding door includes a frame comprising an elongated header member having a topwall, a backwall, an intermediate wall and a bottom wall. The bottom wall and intermediate wall are engageable with sliding door panel support rollers and the bottom wall and intermediate wall are interconnected by a separate support member to distribute door panel loads between such walls. A movable cover is attached to the header member by a hinge part including spaced apart flanges and projections co-operable with projections on the header member to support the cover in open and closed positions. The door operator is supported in the header member by a single angle-shaped frame member supporting a power supply, a controller and a door operator motor. An adjustable torsion bar assembly supports the door panel against sagging.