Abstract:
A control device has a unit for determining a controlled phase of a controlled voltage outputted from an inverter to a generator according to a difference between a target torque and an estimated torque of the generator, a unit for calculating an instructed vector norm of the controlled voltage from the target torque, an electrical angular speed of the generator and parameters indicating characteristics of the generator, a unit for correcting the instructed norm to an adjusted vector norm such that a phase of current flowing through the generator in response to the controlled voltage set at the controlled phase and the adjusted norm is controlled to a phase of an instructed current determined from the target torque, and a unit for controlling the generator by controlling the inverter to output the controlled voltage set at the controlled phase and the adjusted norm to the generator.
Abstract:
A fuel cell power supply device can include a fuel cell, a voltage boosting device with an input unit connected to the fuel cell, and an output unit connected to a first load. The boosting device can boost an output voltage and supply electric power to the first load. A storage device is connected to the input unit or the output unit, and a secondary battery can be connected to the output unit of the voltage boosting device via a voltage conversion device. An electric power supply control device controls operation of the voltage conversation device, to carry out supply of electric power to the first load from the secondary battery via the voltage conversion unit. The electric power supply control device also carries out charging of the secondary battery by the supply of electric power to the secondary battery from the voltage boosting device via the voltage conversion device.
Abstract:
The present invention provides a method and apparatus for providing power to a fan motor. One embodiment of the apparatus includes a boost regulator configured to provide an output current to a fan motor using an input current provided at an input voltage by a power supply. The fan motor is configured to draw the output current at a first frequency and the input current is constant within a first selected tolerance over a time scale longer than indicated by the first frequency.
Abstract:
A power supply device for a vehicle includes a battery, a power line (power supply line and ground line), a connection unit, a charger that is an electric power supply unit, an accessory load, a voltage sensor and a control device. When the accessory load is operating, the control device sends signals to the connection unit to turn off all of three system main relays. Thereby, battery is electrically disconnected from charger. The control device further produces a power command based on a predetermined target voltage and a voltage detected by the voltage sensor such that the detected voltage attains the target voltage.
Abstract:
When power storage units (10) and (20) are both in a normal condition, system relays (SMR1) and (SMR2) are maintained in an ON state. A converter (18) performs a voltage conversion operation in accordance with a voltage control mode (boost), and a converter (28) performs a boost operation in accordance with an electric power control mode. If some kind of fault condition occurs in the power storage unit (10) and the system relay (SMR1) is driven to an OFF state, the converters (18) and (28) stop the voltage conversion operation and maintain an electrically conducting state between the power storage units (10) and (20) and a main positive bus (MPL), a main negative bus (MNL).
Abstract:
A motor driving system includes a power supply, a driver, a motor, and a control unit. The driver includes a driving module and a power converting module. The driving module is connected to the power supply. The power converting module is connected to the power supply. The motor includes a power terminal connected to the power converting module. The control unit is connected to the power converting module. The power supply is configured to provide power for the driver. The driving module is configured to control the motor. The control unit is configured to control the power converting module to output a changeable voltage to the motor.
Abstract:
A motor control apparatus for an electric vehicle has an AC motor system including a power conversion unit and a motor/generator. The power conversion unit performs conversion between DC power and AC power to drive the motor/generator. The motor control apparatus further includes a decoupling control section configured to perform decoupling control, which restricts interference between system voltage control and motor torque control, by correcting a control state amount of one of the system voltage control and the motor torque control by a control state amount of the other of the system voltage control and the motor torque control.
Abstract:
In a drive system of an AC motor in which a motor current is feedback-controlled, a motor current command is produced in a normal operation according to a torque command value on an optimum efficiency characteristic line so as to select an optimum current phase maximizing an output torque with a constant motor current amplitude. Conversely, when the AC motor produces an excessively generated power exceeding a regeneratable power quantity of the AC motor, a consuming operation is performed for intentionally increasing the power loss in the AC motor. In the consuming operation, the motor current command is produced according to the torque command value on a loss increase characteristic line to change the current phase from the above optimum value. Thereby, the power loss in the AC motor can be increased to consume the surplus power without causing instability in the motor control.
Abstract:
A boost converter boosts a DC voltage of a DC power supply. An inverter converts the output voltage of the boost converter into an AC voltage. An AC motor is driven by the output voltage of the inverter. A control device which controls the boost converter reduces an output voltage instruction value of the boost converter in the case where the rotation speed of the AC motor is decreased and an absolute value of a variation rate of the rotation speed is not less than a predetermined value. The inverter is controlled in the control mode selected from a plurality of control modes including three modes of a sine wave PWM control mode, an overmodulation PWM control mode and a rectangular wave control mode. The control device of the boost converter reduces the output voltage instruction value of the boost converter only in the case where the control mode of the inverter is the rectangular wave control mode or the overmodulation control mode.
Abstract:
A circuit for boosting the voltage output of an alternator utilizes the armature coils of the alternator as part of the boost circuit. The circuit and methods utilizing this circuit can enable refined control strategies for operating a plurality of engine systems during propulsion, idling and braking and is applicable to large systems such as trucks, ships, cranes and locomotives utilizing diesel engines, gas turbine engines, other types of internal combustion engines, fuel cells or combinations of these that require substantial power and low emissions utilizing multiple power plant combinations.