Abstract:
The invention relates to thermally conductive greases that may contain carrier oil(s), dispersant(s), and thermally conductive particles, wherein the thermally conductive particles are a mixture of at least three distributions of thermally conductive particles, each of the at least three distributions of thermally conductive particles having an average (D 50 ) particle size which differs from the other average particle sizes by at least a factor of 5.
Abstract:
A method for in-situ solid lubrication of sliding electrical contacts includes the steps of providing a device having a movable electrically conductive first member (110) and an electrically conductive second member (105,106,107), the first and second member being in electrical contact at a slideable electrical contact, and automatically applying an electrically conductive solid lubricant transfer film (112) to the slideable electrical contact during operation of the device. The applying step can be a deposition of the electrically conductive solid lubricant transfer film (112) on a surface of the first member (110), wherein the electrically conductive solid lubricant transfer film is carried by movement of the first member to the electrical contact.
Abstract:
A silicon elastomer compatible constant velocity joint grease comprises a urea grease composed of a lubricating oil and a urea thickener and an effective amount of a friction reducing additive package comprising vermiculite, molybdenum oxysulfide dithiocarbamate, polyphenylene sulfide and potassium triborate. The additive package solids have particle sizes below about 40 microns.
Abstract:
An aqueous antimicrobial conveyor track lubricant composition is provided, comprising: (a) an effective lubricating amount of neutralised C8-C22 fatty acid soap; (b) an effective antimicrobial amount of silver ions; (c) an amount of base sufficient to set the pH of the composition at from 8 to 11. Furthermore, the invention provides a concentrate, which upon dilution with water, forms this aqueous antimicrobial composition. The invention also relates to the use of silver ions as an antimicrobial constituent in a soap based conveyor track lubricant composition.
Abstract:
According to the method of the invention, first a paste is produced from a plastics dispersion and fillers in order to form the plastics sliding layer. This paste is free from organic solvents and is applied to a sintered porous metal layer. The resultant multi-layer material is then sintered. Since organic solvents are not used, the risks to health and the risk of fire are considerably reduced. Furthermore, the composite materials produced according to the invention have exceptional resistance to cavitation. In addition to conventional fields of application relative to lubrication-free articles, such as bearings, these composite materials can therefore also be used in gear pumps and shock absorbers.
Abstract:
A lubricant and surface conditioner for formed metal surfaces, particularly beverage containers, reduces the coefficient of static friction of said metal surfaces and enables drying said metal surfaces at a lower temperature. An aqueous composition for forming the conditioner by contact with metal surfaces includes a water-soluble organic material selected from a phosphate ester, alcohol, fatty acid including mono-, di-, tri-, and polyacids; fatty acid derivatives such as salts, hydroxy acids, amides, esters, ethers and derivatives thereof; and mixtures thereof and at least one of the elements selected from zirconium, titanium, cerium, aluminum, iron, tin, vanadium, tantalum, niobium, molybdenum, tungsten, and hafnium in metallic or ionic form. In order to avoid formation of sludge in the aqueous lubricant and surface conditioner forming composition, the composition should contain as little as possible of materials containing phenanthrene rings, such as conventional surfactants made by ethoxylating resin. In order to assure the minimization of such surfactants in the aqueous lubricant and surface conditioner forming composition, surfactants containing phenanthrene rings should also be avoided or minimized in earlier cleaning stages.
Abstract:
The coefficient of friction of aluminum can surfaces after alkaline cleaning and drying can be substantially reduced by adding to the alkaline cleaner a mobility-enhancing additive, preferably a surface active quaternary ammonium salt with hydroxyethyl substituents on the quaternary nitrogen atoms. A can surface suitable for automatic conveying and high quality lacquer or printing ink adhesion can thereby be obtained, if desired, without including any substantial fluoride content in any treatment stage.
Abstract:
A lubricant and surface conditioner for formed metal surfaces, particularly aluminum and tin beverage containers, reduces the coefficient of static friction of said metal surfaces and enables drying said metal surfaces at a lower temperature. The conditioner includes (i) a water-soluble organic material selected from amine oxides and quaternary ammonium salts, ethoxylated castor oil derivatives, and imidazoline moiety-containing phosphonates and preferably also includes (ii) at least one of fluozirconate, fluohafnate, or fluotitanate ion, and (iii) phosphate and/or nitrate ions. Good resistance to damaging the friction reducing effect by overheating and to staining of the domes of treated containers during pasteurization can be achieved.
Abstract:
A lubricant and surface conditioner for formed metal surfaces, particularly beverage containers, reduces the coefficient of static friction of said metal surfaces and enables drying said metal surfaces at a lower temperature. The conditioner is formed by contacting the metal surface with an aqueous composition that includes a water-soluble organic material selected from a phosphate ester, alcohol, fatty acid including mono-, di-, tri-, and polyacids; fatty acid derivatives such as salts, hydroxy acids, amides, esters, ethers and derivatives thereof; and mixtures thereof.