Abstract:
Ein spektraler fotoelektrischer Messwandler besteht aus einem Feld (10) von fotoelektrischen Wandlerelementen und diesen vorgeschalteten, auf einem gemeinsamen Filterträger (21) angeordneten dielektrischen Interferenz-Bandpassfiltern (22a, 22b) zur Sensibilisierung der Wandlerelemente auf unterschiedliche Wellenlängenbereiche des Messlichts. Die Bandpassfilter sind in eine Anzahl von Filtergruppen eingeteilt, die jeweils die gleichen, innerhalb der Filtergruppe unterschiedlichen Bandpassfilter enthalten. Ein optisches Ablenkelement (30) verschiebt die effektiven Durchlasskurven der Bandpassfilter aller Filtergruppen ausser einer spektral so, dass die effektiven Durchlasskurven aller Bandpassfilter verschiedene spektrale Lagen aufweisen. Dadurch wird mit wenigen unterschiedlichen Bandpassfiltern eine Vervielfachung der effektiv zur Verfügung gestellten Filterkanäle erreicht. Aufgrund der geringen Anzahl unterschiedlicher Bandpassfilter kann der Messwandler kostengünstig hergestellt werden.
Abstract:
Ein Detektor, insbesondere zur spektralen Detektion von Licht in einem Mikroskop, mit einer photosensitiven Anordnung (1) mit mindestens einer photosensitiven Fläche, wobei in einem Strahlengang vor der photosensitiven Anordnung (1) ein Mittel zur Fokussierung eines spektral aufgespaltenen Lichts auf die photosensitive Anordnung (1) angeordnet ist, ist im Hinblick auf eine besonders hohe Detektionsgeschwindigkeit derart ausgestaltet und weitergebildet, dass das Mittel eine Mikrolinsen-Anordnung (2) mit mindestens einer Mikrolinse aufweist. Des Weiteren sind ein Spektrometer und ein Mikroskop mit einem derartigen Detektor angegeben,
Abstract:
The present invention relates to a spectroscopic analyzing apparatus having a structure for enabling detection of a continuous spectrum over an overall detecting region by sharing the overall detection wavelength range to a plurality of detectors. The spectroscopic analyzing apparatus has a spectroscope, a plurality of detectors, and direction changers provided in connection with one or more detectors among the plurality of detectors. The spectroscope separates incident light into one or more wavelength components. The respective detectors are arranged such that the optical path lengths from the spectroscope to the centers of the photodetecting faces thereof are made coincident with one another. The respective direction changers are arranged on the optical paths of the wavelength components that propagate from the spectroscope to the detectors, and changes the propagation directions of the wavelength components, whereby the direction changers function to adjust the optical path lengths of the wavelength components.
Abstract:
A micromachined interferometer (10) is achieved using a half plane beam splitter. The beam splitter is optically coupled to receive an incident beam (I) and operates to split the incident beam into two interfering beams (L1 and L2), each propagating in a different medium. A fixed mirror (M2) embedded in one of the mediums reflects one of the interfering beams (L2) back towards the half plane beam splitter through such medium, while a moveable mirror (M1), which is controlled by an actuator (40), reflects the other interfering beam (L1) back towards said half plane beam splitter through the other medium. A detection plane (D1 or D2) detects an interference pattern produced as a result of interference between the reflected interfering beams (L3 and L4).
Abstract:
A compact, lightweight, portable optical assembly comprising: a platform; and a plurality of optical elements mounted to the platform; wherein the plurality of optical elements are optically connected to one another with free-space couplings so as to form an optical circuit; and further wherein the platform is sufficiently- mechanically robust so as to maintain the free-space optical coupling between the various optical elements. A method for making a compact, lightweight, portable optical assembly, comprising: providing a platform; and mounting a plurality of optical elements to the platform; wherein the plurality of optical elements are mounted to the platform so that they are optically connected to one another with free-space couplings so as to form an optical circuit; and further wherein the platform is sufficiently mechanically robust so as to maintain the free-space optical coupling between the various optical elements.
Abstract:
A method and system for effecting an appearance model correction for a display unit, e.g., a CRT, using a polynomial-based algorithm is described. The correction may be effected in real time and is based on gamma values associated with the display. Strong correlations with the CIECAM02 specification are achieved according to the present disclosure. The correction functionality may be implemented using a colorimeter that includes a plurality of sensors/filter systems with non overlappng spectral responses, adequate for providing data capable of translation into standard coordinates system such as, CIE XYZ, CIE L* a* b*, or CIE Luv, as well as non-standard operable coordinate systems. The field of view of the colorimeter is chosen to closely track the response of the human eye using an optical path configured to select and limit the field of view in a manner that is insensitive to placement of the colorimeter on the source image. The optical path from the source image to the sensor is configured to select preferred light rays while rejecting undesirable light rays to maximize the signal/noise ratio. A rearward facing sensor channel is included to simultaneously measure ambient light impinging on the source image and feedback means to provide status and/or change of information.
Abstract translation:描述了使用基于多项式的算法对诸如CRT的显示单元进行外观模型校正的方法和系统。 校正可以实时地实现,并且基于与显示相关联的伽马值。 根据本公开实现了与CIECAM02规范的强相关性。 校正功能可以使用包括具有非叠加光谱响应的多个传感器/滤波器系统的色度计来实现,该传感器/滤波器系统足以提供能够转换成标准坐标系统的数据,诸如CIE XYZ,CIE L * a * b *或 CIE Luv,以及非标准可操作的坐标系。 选择色度计的视野以使用配置成以对色度计放置在源图像上不敏感的方式选择和限制视场的光路来密切跟踪人眼的响应。 从源图像到传感器的光路被配置为选择优选的光线,同时抑制不期望的光线以使信号/噪声比最大化。 包括向后的传感器通道以同时测量照射在源图像上的环境光和反馈装置以提供信息的状态和/或变化。
Abstract:
The invention relates to a method for determining clinical and/or chemical parameters (S1) in a medium (10), comprising means (2), for example a laser unit, for emitting coherent light waves (6) and means (4), for example a phototransistor unit, for receiving light waves (8). According to said method, at least some of the emitted light waves (6) are transferred to the medium (10) and the means (4) for receiving light waves (8) measure at least some of the light waves (8) that are reflected in the medium (10), the parameters (S1) being determined as a result of the characteristics of the emitted and received light waves (6; 8). The fact that light waves (6) are emitted into the medium (10) by means of a laser unit (2) and that the light waves (8) that are reflected in the medium (10) are measured by means of a phototransistor (4) enables the parameters (S1) that occur in the target area of the laser beam to be determined advantageously in a processing and control unit.
Abstract:
The invention relates to a filter unit (10) for filtering light comprising a first mask (3) with first cavities, a prism unit (7) and a second mask (8) with second cavities. The prism unit (7) is located between the two masks (3, 8), the first (3) and the second mask (8) having corresponding first and second cavities, which form cavity pairs. At least one second cavity in the second mask (8) is provided for each first cavity in the first mask (3). In addition, one prism is provided in the prism unit (7) for at least one pair of cavities. This produces an accurate, narrow-band filter unit. The invention also relates to an assembly comprising the filter unit and to a device for capturing images.
Abstract:
Integrated spectroscopy systems are disclosed. In some examples, integrated tunable detectors, using one or multiple Fabry-Perot tunable filters, are provided. Other examples use integrated tunable sources. The tunable source combines one or multiple diodes, such as superluminescent light emitting diodes (SLED), and a Fabry Perot tunable filter or etalon. The advantages associated with the use of the tunable etalon are that it can be small, relatively low power consumption device. For example, newer microelectrical mechanical system (MEMS) implementations of these devices make them the size of a chip. This increases their robustness and also their performance. In some examples, an isolator, amplifier, and/or reference system is further provided integrated.
Abstract:
A spectrometer is configured by using a photodetector 1B which comprises a semiconductor substrate 10 having an upper surface 10a, a photodiode array 11 having a plurality of photodiodes 12 aligned on the upper surface 10a of the substrate 10, and a light input section 13 including an opening formed in a predetermined positional relationship to the photodiode array 11; and a main body 2 having a plate portion 20 and support portions 21 and 22 mounted on the substrate 10 of the photodetector 1B. The spectrometer is provided with a lens 23 protruded from a lower face 20b of the plate portion 20 and a planar aberration-reduced blazed reflection diffraction grating 24 provided on an upper face 20a of the plate portion 20 for separating incident light having entered through the light input section 13 and passed through the lens 23 into its spectral components, and configured to detect the spectral components with the photodiode array 11. Thus, a photodetector capable of improving the positioning acuracy of components when it is applied to a spectrometer and the spectrometer using the same are realized.